Dopamine (DA) is an important neurotransmitter in the human body, and a subnormal level is associated with some neurological problems, such as Alzheimer's and Parkinson's diseases. Its use as medicine has progressively increased, as well as its appearance in water bodies, such as domestic or hospital effluents. Dopamine has been found to produce neurological and cardiac damage to the animals that have consumed water with its content, so the removal of dopamine from water is of utmost importance to ensure water safety.
View Article and Find Full Text PDFIn this work, the influence of oxyanions on the catalytic reduction of nitrates using formic acid as the reducing agent was studied as well as the influence of bicarbonate, sulfate, and phosphate co-anions on the catalytic nitrate reduction with Pd:In/AlO (1:0.25 wt.%).
View Article and Find Full Text PDFContamination of water by nitrate has become a worldwide problem, being high levels of this ion detected in the surface, and groundwater, mainly due to the intensive use of fertilizers, and to the discharge of not properly treated effluents. This study aims to evaluate the electrocatalytic process, carried out in a cell divided into two compartments by a cation exchange membrane, and with a copper plate electrode as cathode, identifying the effects of current density, pH, the use of a catalyst in the nitrate reduction, and the production of gaseous compounds. The highest nitrate reduction was obtained with a current density of 2.
View Article and Find Full Text PDFCatalysts of Pd-In supported on activated carbon fiber were synthesized, characterized, and evaluated for the removal of nitrogen oxyanions from water. The work was carried out aiming the development of a green synthesis process, and the studies were accomplished with the following objectives: (a) to evaluate whether catalysts produced by wet impregnation (WI) and autocatalytic deposition (AD) have enough catalytic activity for the removal of oxyanions in water; (b) to determine the efficiency of ion removal using formic acid as a reducing agent; (c) to determine which synthesis method produces less waste. It was found that the two synthesis processes modified the properties of the support and that the distribution of the particles of the metallic phase was of the nanometric order, being these particles found predominantly at the support surface.
View Article and Find Full Text PDFMembrane separation processes are being currently applied to produce drinking water from water contaminated with nitrate. The overall process generates a brine with high nitrate/nitrite concentration that is usually send back to a conventional wastewater treatment plant. Catalytic processes to nitrate reduction are being studied, but the main goal of achieving a high selectivity to nitrogen production is still a matter of research.
View Article and Find Full Text PDF