Publications by authors named "Fernanda M P Tonelli"

Article Synopsis
  • Nanotechnology may solve medical issues like poor drug delivery and microbial resistance by enhancing the properties of substances such as green propolis.
  • Green propolis contains phenolic acids known for their antimicrobial, immunostimulant, and antioxidant benefits, which can be advantageous in healthcare.
  • The minireview discusses recent research on nano solutions involving green propolis, while also highlighting the limitations and future outlook for clinical use of nanomaterials.
View Article and Find Full Text PDF

Synthetic dyes are persistent organic environmental pollutants that can cause extensive damage to living beings and to the ecosystem as a whole. Cost-effective, sustainable, and efficient strategies to deal with this type of pollution are necessary as it commonly resists conventional water treatment methods. Silver nanoparticles (AgNPs) synthesized using the aqueous extract from the leaves, stem, and fruits of (Leucena) were produced and characterized through UV-vis, TEM, EDS, SDL, XPS, XRD, and zeta potential, and they proved to be able to promote adsorption to remediate methylene blue and tartrazine pollution in water.

View Article and Find Full Text PDF

Nanomaterials have been offering improvements in different areas due to their unique characteristics, but cytotoxicity associated with their use is still a topic that concerns researchers. Causing cell death, at first glance, may seem to be a problem and the studies regarding signaling pathways involved in this toxicity are still in their infancy. However, there are scenarios in which this feature is desirable, such as in cancer treatment.

View Article and Find Full Text PDF

The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice).

View Article and Find Full Text PDF

Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age).

View Article and Find Full Text PDF

Biological processes, such as the induction of undifferentiated cells to enable neurogenesis, provide complex mechanisms for study. For further insight, subsets of these processes that are governed by metabolic pathways or key molecules called attractors need to be elucidated. In this review, we have focused on the role of calcium as a driving force of neuronal differentiation.

View Article and Find Full Text PDF

Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation.

View Article and Find Full Text PDF

Graphene and its derivatives, due to a wide range of unique properties that they possess, can be used as starting material for the synthesis of useful nanocomplexes for innovative therapeutic strategies and biodiagnostics. Here, we summarize the latest progress in graphene and its derivatives and their potential applications for drug delivery, gene delivery, biosensor and tissue engineering. A simple comparison with carbon nanotubes uses in biomedicine is also presented.

View Article and Find Full Text PDF

Biomaterial matrices are being developed that mimic the key characteristics of the extracellular matrix, including presenting adhesion sites and displaying growth factors in the context of a viscoelastic hydrogel. This review focuses on two classes of materials: those that are derived from naturally occurring molecules and those that recapitulate key motifs of biomolecules within biologically active synthetic materials. We also discussed some of the most significant biological features of the ECM, and several engineering methods currently being implemented to design and tune synthetic scaffolds to mimic these features.

View Article and Find Full Text PDF

Stem cells are known for their capacity to self-renew and differentiate into at least one specialized cell type. Mesenchymal stem cells (MSCs) were isolated initially from bone marrow but are now known to exist in all vascularized organ or tissue in adults. MSCs are particularly relevant for therapy due to their simplicity of isolation and cultivation.

View Article and Find Full Text PDF

In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites.

View Article and Find Full Text PDF

The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i).

View Article and Find Full Text PDF