Publications by authors named "Fernanda M Cunha"

Article Synopsis
  • Mitochondria influence how cells manage calcium (Ca) signals, particularly through the actions of mitochondrial calcium uniporters for uptake and sodium/calcium exchangers (NCLX) for release.* -
  • During conditions that promote autophagy, like calorie restriction, NCLX expression increases in liver cells, and reducing NCLX impairs autophagy processes.* -
  • Inhibition of NCLX affects autophagy mechanisms without significantly altering mitophagy, highlighting a key role for mitochondrial calcium release in regulating autophagy during nutrient scarcity.*
View Article and Find Full Text PDF

Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation.

View Article and Find Full Text PDF

In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress.

View Article and Find Full Text PDF

The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption.

View Article and Find Full Text PDF

Human HSP27 is a small heat shock protein that modulates the ability of cells to respond to heat shock and oxidative stress, and also functions as a chaperone independent of ATP, participating in the proteasomal degradation of proteins. The expression of HSP27 is associated with survival in mammalian cells. In cancer cells, it confers resistance to chemotherapy; in neurons, HSP27 has a positive effect on neuronal viability in models of Alzheimer's and Parkinson's diseases.

View Article and Find Full Text PDF

The C. elegans lipase-like 5 (lipl-5) gene is predicted to code for a lipase homologous to the human gastric acid lipase. Its expression was previously shown to be modulated by nutritional or immune cues, but nothing is known about its impact on the lipid landscape and ensuing functional consequences.

View Article and Find Full Text PDF

Obesity is a predisposing factor for numerous morbidities, including those affecting the central nervous system. Hypothalamic inflammation is a hallmark of obesity and is believed to participate in the onset and progression of the obese phenotype, by promoting changes in neuronal functions involved in the control of metabolism. The activation of brain immune cells in the hypothalamus, which are represented by microglia and brain macrophages, is associated with obesity and has been the focus of intense research.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) influences energy balance through nonshivering thermogenesis, and its metabolism daily and seasonal variations are regulated by melatonin through partially known mechanisms. We evaluated the role of melatonin in BAT molecular machinery of male Control, pinealectomized (PINX), and melatonin-treated pinealectomized (PINX/Mel) adult rats. BAT was collected either every 3 hours over 24 hours or after cold or high-fat diet (HFD) acute exposure.

View Article and Find Full Text PDF

Background: It has been almost three decades since the removal of oxidized proteins by the free 20S catalytic unit of the proteasome (20SPT) was proposed. Since then, experimental evidence suggesting a physiological role of proteolysis mediated by the free 20SPT has being gathered.

Scope Of Review: Experimental data that favors the hypothesis of free 20SPT as playing a role in proteolysis are critically reviewed.

View Article and Find Full Text PDF

Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes.

View Article and Find Full Text PDF

The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.

View Article and Find Full Text PDF

Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T.

View Article and Find Full Text PDF

Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus.

View Article and Find Full Text PDF

The decreased regenerative capacity of old skeletal muscles involves disrupted turnover of proteins. This study investigated whether leucine supplementation in old rats could improve muscle regenerative capacity. Young and old male Wistar rats were supplemented with leucine; then, the muscles were cryolesioned and examined after 3 and 10 days.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial retrograde signaling is like a messaging system that helps cells communicate when there's a problem with their energy factories (mitochondria).
  • In a type of yeast called Saccharomyces cerevisiae, two important proteins called Rtg1p and Rtg3p help control this messaging system.
  • Research shows that when these signaling pathways don't work right, the yeast cells use more oxygen and struggle to handle a harmful substance called hydrogen peroxide, making them less strong against stress.
View Article and Find Full Text PDF

Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases.

View Article and Find Full Text PDF

Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR.

View Article and Find Full Text PDF

Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria.

View Article and Find Full Text PDF

eNOS activation resulting in mitochondrial biogenesis is believed to play a central role in life span extension promoted by calorie restriction (CR). We investigated the mechanism of this activation by treating vascular cells with serum from CR rats and found increased Akt and eNOS phosphorylation, in addition to enhanced nitrite release. Inhibiting Akt phosphorylation or immunoprecipitating adiponectin (found in high quantities in CR serum) completely prevented the increment in nitrite release and eNOS activation.

View Article and Find Full Text PDF

Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO(•)-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content.

View Article and Find Full Text PDF

Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity.

View Article and Find Full Text PDF

The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Mild mitochondrial uncoupling, or the reduction of the efficiency of energy conversion without compromising intracellular high energy phosphate levels, is a protective therapeutic strategy under many laboratory conditions. Here we discuss these conditions, which include both cell and animal models of ischemia reperfusion and complications associated with the metabolic syndrome. We also discuss drugs that promote mild mitochondrial uncoupling and naturally occurring mild mitochondrial uncoupling pathways involving free fatty acid cycling and K(+) transport.

View Article and Find Full Text PDF

Despite the fact that ageing necessarily displays unique aspects in a single-cell organism, yeast, in particular Saccharomyces cerevisiae, are useful as model organisms to study ageing. Here we review mitochondrial characteristics involved in yeast longevity, including biogenesis, autophagy, respiration and oxidative phosphorylation, nutrient sensing, mitochondria-nuclear signaling, redox state and mitochondrial DNA integrity. Altogether, the yeast model unearths a rich and complex network involving many mitochondrial functions in ageing, and uncovers physiological and genetic mechanisms capable of extending lifespan in this model which may be shared with more complex organisms.

View Article and Find Full Text PDF