Assessing the impacts of climate change and land-use change is of critical importance, particularly for urbanized catchments. In this study, a novel framework was used to examine and quantify these impacts on the runoff in six catchments in Southeast Queensland, Australia. For each catchment, temporal variations in impervious areas were derived from six satellite images using a sub-pixel classification technique and incorporated into the SIMHYD hydrological model.
View Article and Find Full Text PDFHarmful algal blooms of the freshwater cyanobacteria genus Microcystis are a global problem and are expected to intensify with climate change. In studies of climate change impacts on Microcystis blooms, atmospheric stilling has not been considered. Stilling is expected to occur in some regions of the world with climate warming, and it will affect lake stratification regimes.
View Article and Find Full Text PDFLakes and reservoirs throughout the world are increasingly adversely affected by cyanobacterial harmful algal blooms (CyanoHABs). The development and spatiotemporal distributions of blooms are governed by complex physical mixing and transport processes that interact with physiological processes affecting the growth and loss of bloom-forming species. Individual-based models (IBMs) can provide a valuable tool for exploring and integrating some of these processes.
View Article and Find Full Text PDFDirect Contact Membrane Distillation (DCMD) is a promising and feasible technology for water desalination. Most of the models used to simulate DCMD are one-dimensional and/or use a linear function of vapour pressure which relies on experimentally determined parameters. In this study, the model of DCMD using Nusselt correlations was improved by coupling the continuity, momentum, and energy equations to better capture the downstream alteration of flow field properties.
View Article and Find Full Text PDFHydrodynamic modelling is a powerful tool to gain understanding of river conditions. However, as widely known, models vary in terms of how they respond to changes and uncertainty in their input parameters. A hydrodynamic river model (MIKE HYDRO River) was developed and calibrated for a flood-prone tidal river located in South East Queensland, Australia.
View Article and Find Full Text PDFEnviron Monit Assess
November 2019
Tropical regions are characterized by hydrological extreme events, which are likely to be exacerbated by climate change. Therefore, quantifying the extent to which climate change may damage a hydrological system becomes crucial. This paper aims to evaluate the findings from previous research on projected impacts of climate change on hydrological systems located in regions bounded by the Tropic of Cancer and the Tropic of Capricorn.
View Article and Find Full Text PDF