Publications by authors named "Fernanda Gentil"

Ménière's disease is an inner ear disorder, associated with episodes of vertigo, fluctuant hearing loss, tinnitus, and aural fullness. Ménière's disease is associated with endolymphatic hydrops. Clinical evidences show that this disease is often incapacitating, negatively affecting the patients' everyday life.

View Article and Find Full Text PDF

Chronic otitis media enables the appearance of a benign middle ear tumor, known as a cholesteatoma, that may compromise hearing. To evaluate the influence of a cholesteatoma growth on the hearing function, a computational middle ear model based on the finite element method was used and three different size of cholesteatoma were modeled. The cholesteatoma solidification and the consequent degradation of the ossicles were also simulated as two condition that commonly occurs during cholesteatoma evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Hearing impairment significantly affects people's quality of life and is common across all age groups, with a focus on understanding the cochlea's acoustic response.
  • This study compares different mathematical models of the cochlea's travelling wave, highlighting the advantages of a spiral model over simplified straight models.
  • Results show that using transversely isotropic mechanical properties for the basilar membrane yields more accurate cochlear mapping, with lower root mean square error values than isotropic models.
View Article and Find Full Text PDF

Vertiginous symptoms are one of the most common symptoms in the world, therefore investing in new ways and therapies to avoid the sense of insecurity during the vertigo episodes is of great interest. The classical maneuvers used during vestibular rehabilitation consist in moving the head in specific ways, but it is not fully understood why those steps solve the problem. To better understand this mechanism, a three-dimensional computational model of the semicircular ducts of the inner ear was built using the finite element method, with the simulation of the fluid flow being obtained using particle methods.

View Article and Find Full Text PDF

Purpose: The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is vestibular rehabilitation, permitting to improve the symptoms.

View Article and Find Full Text PDF

The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus.

View Article and Find Full Text PDF

Introduction: Tinnitus is an auditory sensation whose source comes from external stimulus to the body. All studies that can help people with this disorder are very imperative.

Objective: This study investigates the cochlear function in patients with tinnitus, using Distortion Products Otoacoustic Emissions (DPOAE).

View Article and Find Full Text PDF

The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution.

View Article and Find Full Text PDF

Purpose: Otosclerosis is a metabolic bone disease of the otic capsule that can cause the stapes fixation, resulting in conductive hearing loss or, in a profound sensorineural deafness threshold. Surgery is one of the possible treatments for the otosclerosis. To repair small focus of otosclerosis in the anterior crus of the stapes, in 1960, Hough suggested the implementation of a technique in which part of the anterior crus is fractured and the stapes turned.

View Article and Find Full Text PDF

This work presents a biomechanical study of myringosclerosis (MS), an abnormal condition of the ear that produces calcification of the lamina propria of the eardrum. The study researched the transfer of sound to the stapes depending on the localization, dimension and calcification degree of the MS plaques. Results were obtained using a validated finite element model of the ear.

View Article and Find Full Text PDF

The ear is a complex organ that can be affected by various pathologies that are still fairly misunderstood. This work tests the possibilities of studying the ear and its pathologies using a virtual environment and thus bypassing expensive and time-consuming clinical trial. A previous validated finite element model of the middle ear was employed to study two pathological states of the middle ear.

View Article and Find Full Text PDF

Hearing is a sequence of processes in which the ear translates sound waves into electrical signals, which are then sent to the brain where they are interpreted as sound. The ossicular chain of the middle ear is formed by three ossicles (malleus, incus, and stapes), of which the last and smallest, the stapes, vibrates, thus communicating with the inner ear through the stapes footplate. When abnormal bone formation immobilizes the stapes (otosclerosis), the passage of sound does not correctly occur and hearing can be compromised.

View Article and Find Full Text PDF

In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging.

View Article and Find Full Text PDF

The human ear is a complex biomechanical system and is divided into three parts: outer, middle and inner ear. The middle ear is formed by ossicles (malleus, incus and stapes), ligaments, muscles and tendons, which transfers sound vibrations from the eardrum to the inner ear, linking with mastoid and Eustachian tube. In this work, a finite element modelling of the tympano-ossicular system of the middle ear was developed.

View Article and Find Full Text PDF

The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax.

View Article and Find Full Text PDF

The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII.

View Article and Find Full Text PDF