Publications by authors named "Fernanda A Sala"

Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, genes are present in a single operon within the well conserved cluster, and in some cases, pairs of genes are fused to encode a single, chimeric polypeptide.

View Article and Find Full Text PDF

Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins.

View Article and Find Full Text PDF

Superoxide dismutase-1 (SOD1) maturation comprises a string of posttranslational modifications which transform the nascent peptide into a stable and active enzyme. The successive folding, metal ion binding, and disulphide acquisition steps in this pathway can be catalysed through a direct interaction with the copper chaperone for SOD1 (CCS). This process confers enzymatic activity and reduces access to noncanonical, aggregation-prone states.

View Article and Find Full Text PDF

Protein-protein interactions play a critical role in promoting the stability of protein quaternary structure and in the assembly of large macromolecular complexes. What drives the stabilization of such assemblies is a central question in biology. A limiting factor in fully understanding such systems is the transient nature of many complexes, making structural studies difficult.

View Article and Find Full Text PDF

The ability to modify chemical structures in an automated and controlled manner is useful in molecular design. This Perspective introduces the MUDO molecule editor and shows how automated molecule editing can be used to standardize structures, enumerate tautomeric and ionization states, identify matched molecular pairs. Unlike its predecessor Leatherface, MUDO can also process 3D structures and this capability can be used to link non-covalently docked ligands to proteins.

View Article and Find Full Text PDF