Steroid hormones play numerous important and diverse roles in the differentiation and development of vertebrate primary and secondary reproductive characteristics. However, the exact role of androgen receptors-which bind circulating androgens-in this regulatory pathway is unclear. Teleost fishes further complicate this question by having two paralogs of the androgen receptor (ARα and ARβ) resulting from a duplication of their ancestral genome.
View Article and Find Full Text PDFSocial hierarchies are ubiquitous in social species and profoundly influence physiology and behavior. Androgens like testosterone have been strongly linked to social status, yet the molecular mechanisms regulating social status are not known. The African cichlid fish is a powerful model species for elucidating the role of androgens in social status given their rich social hierarchy and genetic tractability.
View Article and Find Full Text PDFThe evolutionary diversification of animal behavior is often associated with changes in the structure and function of nervous systems. Such evolutionary changes arise either through alterations of individual neural components ("mosaically") or through scaling of the whole brain ("concertedly"). Here we show that the evolution of a courtship behavior in Malawi cichlid fish is associated with rapid, extensive, and specific diversification of orosensory, gustatory centers in the hindbrain.
View Article and Find Full Text PDFBackground: Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system.
View Article and Find Full Text PDFThe highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored.
View Article and Find Full Text PDFFor many species, social rank determines which individuals perform certain social behaviors and when. Higher ranking or dominant (DOM) individuals maintain status through aggressive interactions and perform courtship behaviors while non-dominant (ND) individuals do not. In some species ND individuals ascend (ASC) in social rank when the opportunity arises.
View Article and Find Full Text PDFACS Chem Neurosci
August 2018
Most biomedical research is performed using a very limited number of "model" species. In part, this has resulted from a combination of full genomes, manipulation of genes, and short generation times in these species. However, the advent of low-cost sequencing and gene editing in any organism has increased the use of nontraditional organisms.
View Article and Find Full Text PDFPolicy Insights Behav Brain Sci
March 2018
Biomedical research is dominated by relatively few nonhuman animals to investigate healthy and disease conditions. Research has overrelied on these models due to their well-described genomes, the capability to control specific genes, and the high rate of reproduction. However, recent advances in large-scale molecular sequencing experiments have revealed, in some cases, the limited similarities in experimental outcomes observed in common rodents (i.
View Article and Find Full Text PDFTeleost fish continues to grow their eyes throughout life with the body size. In Astatotilapia burtoni, the fish retina increases by adding new retinal cells at the ciliary marginal zone (CMZ) and in the outer nuclear layer (ONL). Cell proliferation at both sites exhibits a daily rhythm in number of dividing cells.
View Article and Find Full Text PDFHow do animal social skills influence evolution? Complex animal social behaviors require many cognitive skills including individual recognition and observational learning. For social systems to evolve, these abilities need to be transmitted genetically or culturally and supported by the evolution of underlying neural systems. Because animal skill sets are so varied, it seems best to describe animal cognitive behaviors as being a social calculus that can change with experience, which has evolved to match and facilitate the complexity of the social system where it arose.
View Article and Find Full Text PDFBackground: The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A.
View Article and Find Full Text PDFDespite continued study on the neurobiological bases of aggressive and sexual behaviors, it is still not well understood how the brain integrates social information with physiological and neural states to produce context-specific behavioral outcomes. In fishes, manipulation of endogenous levels of arginine vasotocin (AVT) through peripheral and intracerebroventricular pharmacological injections results in significant changes in social behaviors, including aggressive and reproduction-related behaviors. In addition, many features of AVT neurons have been shown to correlate with social status and associated behavioral phenotypes.
View Article and Find Full Text PDFBackground: Cichlid fishes have evolved remarkably diverse reproductive, social, and feeding behaviors. Cell-to-cell signaling molecules, notably neuropeptides and peptide hormones, are known to regulate these behaviors across vertebrates. This class of signaling molecules derives from prohormone genes that have undergone multiple duplications and losses in fishes.
View Article and Find Full Text PDFMale African cichlid fish, Astatotilapia burtoni, have been classified as dominant or subordinate, each with unique behavioral and endocrine profiles. Here we characterize two distinct subclasses of dominant males based on types of aggressive behavior: (1) males that display escalating levels of aggression and court females while they establish a territory, and (2) males that display a stable level of aggression and delay courting females until they have established a territory. To profile differences in their approach to a challenge, we used an intruder assay.
View Article and Find Full Text PDFIn most species, females time reproduction to coincide with fertility. Thus, identifying factors that signal fertility to the brain can provide access to neural circuits that control sexual behaviors. In vertebrates, levels of key signaling molecules rise at the time of fertility to prime the brain for reproductive behavior [1-11], but how and where they regulate neural circuits is not known [12, 13].
View Article and Find Full Text PDFFish comprise half of extant vertebrate species and use a rich variety of reproductive strategies that have yielded insights into the basic mechanisms that evolved for sex. To maximize the chances of fertilization and survival of offspring, fish species time reproduction to occur at optimal times. For years, ethologists have performed painstaking experiments to identify sensory inputs and behavioral outputs of the brain during mating.
View Article and Find Full Text PDFSocial status hierarchies are ubiquitous in vertebrate social systems, including humans. It is well known that social rank can influence quality of life dramatically among members of social groups. For example, high-ranking individuals have greater access to resources, including food and mating prerogatives that, in turn, have a positive impact on their reproductive success and health.
View Article and Find Full Text PDFGestational and developmental cues have important consequences for long-term health, behavior and adaptation to the environment. In addition, social stressors cause plastic molecular changes in the brain that underlie unique behavioral phenotypes that also modulate fitness. In the adult African cichlid, Astatotilapia burtoni, growth and social status of males are both directly regulated by social interactions in a dynamic social environment, which causes a suite of plastic changes in circuits, cells and gene transcription in the brain.
View Article and Find Full Text PDFWhat effect does an audience have on an animal's behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the "watchers" and the "watched" during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience.
View Article and Find Full Text PDFDominance hierarchies are ubiquitous in social species. Social status is established initially through physical conflict between individuals and then communicated directly by a variety of signals. Social interactions depend critically on the relative social status of those interacting.
View Article and Find Full Text PDFInitiating and regulating vertebrate reproduction requires pulsatile release of gonadotropin-releasing hormone (GnRH1) from the hypothalamus. Coordinated GnRH1 release, not simply elevated absolute levels, effects the release of pituitary gonadotropins that drive steroid production in the gonads. However, the mechanisms underlying synchronization of GnRH1 neurons are unknown.
View Article and Find Full Text PDFDominance hierarchies are ubiquitous in social species that require social cognition to maintain. Status may be established initially through physical conflict but is maintained by social signals between individuals that depend critically on the relative social status of those interacting. How do individuals collect information they need to modulate their behavior? Using a particularly suitable fish model system living in a complex social environment, we describe how the social context of behavior shapes the brain and, in turn, alters the behavior of animals as they interact.
View Article and Find Full Text PDFCichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs.
View Article and Find Full Text PDF