The dataset contains leaf venation architecture and functional traits for a phylogenetically diverse set of 122 plant species (including ferns, basal angiosperms, monocots, basal eudicots, asterids, and rosids) collected from the living collections of the University of California Botanical Garden at Berkeley (37.87° N, 122.23° W; CA, USA) from February to September 2021.
View Article and Find Full Text PDFVariation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.
View Article and Find Full Text PDFThis study aims to find the interaction between ionome and metabolome profiles of Pteris vittata L., an arsenic hyperaccumulator plant, to reveal its metal tolerance mechanism. Therefore, at the Pb-Zn mining sites located in Thai Nguyen province, Vietnam, where these species dominate, soil and plant samples were collected.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2020
Histopathological image analysis is a challenging task due to a diverse histology feature set as well as due to the presence of large non-informative regions in whole slide images. In this paper, we propose a multiple-instance learning (MIL) method for image-level classification as well as for annotating relevant regions in the image. In MIL, a common assumption is that negative bags contain only negative instances while positive bags contain one or more positive instances.
View Article and Find Full Text PDFObjective: The aim is to provide a high-level synthesis of human factors research that contributed to the development of detect-and-avoid display requirements for unmanned aircraft systems (UAS).
Background: The integration of UAS into the U.S.
This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic-hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 microM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P.
View Article and Find Full Text PDF