Publications by authors named "Fermor B"

Objective: Increased pro-inflammatory cytokines and reactive oxygen and nitrogen species (RONS) occur in osteoarthritis (OA). Oxygen tension can alter the levels of RONS induced by interleukin-1 (IL-1). RONS such as nitric oxide (NO) can alter energy metabolism.

View Article and Find Full Text PDF

Introduction: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet.

View Article and Find Full Text PDF

Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO(-)) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is associated with increased levels of reactive nitrogen and oxygen species and pro-inflammatory cytokines, such as interleukin-1 (IL-1). Nitric oxide (NO) can mediate a number of the catabolic effects of IL-1 in articular cartilage. The aims of this study were to determine if OA cartilage shows evidence of DNA damage, and if IL-1 could induce DNA damage in non-OA cartilage by increasing NO or superoxide.

View Article and Find Full Text PDF

Rheumatoid arthritis and osteoarthritis are painful and debilitating diseases with complex pathophysiology. There is growing evidence that pro-inflammatory cytokines (e.g.

View Article and Find Full Text PDF

Injury or loss of the knee meniscus is associated with altered joint stresses that lead to progressive joint degeneration. The goal of this study was to determine if dynamic mechanical compression influences the production of inflammatory mediators by meniscal cells. Dynamic compression increased prostaglandin E2 (PGE(2)) and nitric oxide (NO) production over a range of stress magnitudes (0.

View Article and Find Full Text PDF

Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension.

View Article and Find Full Text PDF

Objective: Osteoarthritis is characterized by the degradation of articular cartilage. The catabolic activity of chondrocytes is partly regulated by nitric oxide (NO), which with superoxide (O2-) leads to the formation of peroxynitrite (OONO-), a potentially damaging reactive species. Cartilage is avascular and functions at reduced oxygen tension.

View Article and Find Full Text PDF

During knee joint loading, the fibrocartilaginous menisci experience significant spatial variations in mechanical stimuli. Meniscus cells also exhibit significant variations in biosynthesis and gene expression depending on their location within the tissue. These metabolic patterns are consistent with a more chondrocytic phenotype for cells located within the avascular inner two-thirds compared with a more fibroblastic phenotype for cells within the vascularized outer periphery.

View Article and Find Full Text PDF

Objective: Macromolecules of the articular cartilage extracellular matrix released into synovial fluid, blood, or urine can serve as potentially useful biomarkers of the severity of osteoarthritis (OA). Biomechanical factors play an important role in OA pathogenesis, yet their influence on biomarker production is not well understood. The goal of this study was to examine the hypothesis that dynamic mechanical stress influences the release of these biomarkers from articular cartilage.

View Article and Find Full Text PDF

Human adipose derived adult stem (hADAS) cells have the ability to differentiate into a chondrogenic phenotype in three-dimensional culture and media containing dexamethasone and TGF-beta. The current study examined the potential of a genetically engineered elastin-like polypeptide (ELP) to promote the chondrocytic differentiation of hADAS cells without exogenous chondrogenic supplements. hADAS cells were cultured in ELP hydrogels in either chondrogenic or standard medium at 5% O2 for up to 2 weeks.

View Article and Find Full Text PDF

Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population.

View Article and Find Full Text PDF

Objectives: Articular cartilage is an avascular tissue that exists at low oxygen tension. Oxygen tension can influence the production of the pro-inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE(2)) in cartilage, which are increased in osteoarthritis (OA). The synthesis of these molecules can be stimulated by mechanical stress, which is an important risk factor for OA.

View Article and Find Full Text PDF

Articular cartilage is an avascular connective tissue that exhibits little intrinsic capacity for repair. Articular cartilage exists in a reduced oxygen ( approximately 5%) environment in vivo; therefore, oxygen tension may be an important factor that regulates the metabolism of chondrocyte progenitors. A number of recent studies have developed tissue engineering approaches for promoting cartilage repair using undifferentiated progenitor cells seeded on biomaterial scaffolds, but little is known about how oxygen might influence these engineered tissues.

View Article and Find Full Text PDF

Objectives: Cells of the knee meniscus respond to changes in their biochemical and biomechanical environments with alterations in the biosynthesis of matrix constituents and inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine that is involved in the pathogenesis of both osteoarthritis and rheumatoid arthritis, but its influence on meniscal physiology or mechanobiology is not fully understood. The objectives of this study were to examine the hypothesis that cyclic mechanical strain of meniscal cells modulates the biosynthesis of matrix macromolecules and pro-inflammatory mediators, and to determine if this response is altered by TNF-alpha.

View Article and Find Full Text PDF

Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage.

View Article and Find Full Text PDF

Osteoarthritis is a painful and debilitating disease characterized by progressive degenerative changes in the articular cartilage and other joint tissues. Biomechanical factors play a critical role in the initiation and progression of this disease, as evidenced by clinical and animal studies of alterations in the mechanical environment of the joint caused by trauma, joint instability, disuse, or obesity. The onset of these changes after joint injury generally has been termed posttraumatic arthritis and can be accelerated by factors such as a displaced articular fracture.

View Article and Find Full Text PDF

The meniscus is an intra-articular fibrocartilaginous structure that serves essential biomechanical roles in the knee. With injury or arthritis, the meniscus may be exposed to significant changes in its biochemical and biomechanical environments that likely contribute to the progression of joint disease. The goal of this study was to examine the influence of mechanical stress on matrix turnover in the meniscus in the presence of interleukin-1 (IL-1) and to determine the role of nitric oxide (NO) in these processes.

View Article and Find Full Text PDF

Objective: Biomechanical signals play important roles in regulating the homeostasis of articular cartilage, but under abnormal conditions may be a critical factor in the onset and progression of arthritis. Prostaglandin E(2) (PGE(2)) and nitric oxide (NO), derived from the enzymes cyclo-oxygenase 2 (COX2) and NO synthase 2 (NOS2), are inflammatory mediators that modulate numerous physiological and pathophysiological processes and are potentially important pharmacological targets in osteoarthritis. The goal of this study was to determine the effect of mechanical compression on PGE(2) production in the presence of selective NOS2 and COX2 inhibitors.

View Article and Find Full Text PDF

Objective: Articular cartilage is an avascular tissue that functions at a lower oxygen tension than do most tissues. With mobilization, arthritic joints may undergo cycles of hypoxia and reoxygenation. The goal of this study was to determine the effects of hypoxia and reoxygenation on cytokine-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in articular cartilage.

View Article and Find Full Text PDF

Objective: In osteoarthritis (OA), a combination of biochemical and biomechanical factors may damage both menisci and articular cartilage. Nitric oxide (NO) and prostaglandin E2 (PGE2) have been implicated as mediators of inflammation in OA. The goals of this study were to determine if menisci from patients with OA produce NO and PGE2, and if the proinflammatory cytokines interleukin-1beta (IL-1beta), tumor necrosis factor a (TNFalpha), and IL-17 augment NO and PGE2 production by these tissues.

View Article and Find Full Text PDF

Nitric oxide (NO) production and NO synthase (NOS) expression are increased in osteoarthritis and rheumatoid arthritis, suggesting that NO may play a role in the destruction of articular cartilage. To test the hypothesis that mechanical stress may increase NO production by chondrocytes, we measured the effects of physiological levels of static and intermittent compression on NOS activity, NO production, and NOS antigen expression by porcine articular cartilage explants. Static compression significantly increased NO production at 0.

View Article and Find Full Text PDF

Objective: The menisci play an important role in the biomechanics of the knee, and loss of meniscal function has been associated with progressive degenerative changes of the joint in rheumatoid arthritis as well as in osteoarthritis. However, little is known about the underlying mechanisms that link meniscal injury or degeneration to arthritis. Meniscal fibrochondrocytes respond to environmental mediators such as growth factors and cytokines, but the influence of mechanical stress on their metabolic activity is not well understood.

View Article and Find Full Text PDF

Nitric oxide (NO) and leukotrienes regulate a variety of processes in joint tissues and are frequently elevated in arthritis. Mechanical stress can induce biochemical and functional changes in cartilage that may influence mediator production. To investigate the relationship between mechanical stress and the production of leukotriene B(4) (LTB(4)) and NO, explants of porcine articular cartilage were subjected to mechanical compression for 1 h followed by 23 h recovery in the presence or absence of the NOS2 inhibitor 1400W.

View Article and Find Full Text PDF

Clinical and experimental studies demonstrate that injured anterior cruciate ligaments (ACL) do not usually heal and that autografts used to repair the ACL rapidly weaken in the early period and take a long time to regain strength. The aim of this study was to develop an in vitro culture system in which environmental and biochemical factors influencing the proliferation and matrix synthesis of cells derived from human anterior cruciate ligaments can be studied. Primary cultures of human ACL cells were obtained by outgrowth from explants of normal ACL obtained at knee replacement for osteoarthritis in Dulbecco's minimum essential medium (DMEM).

View Article and Find Full Text PDF