The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics.
View Article and Find Full Text PDFNowadays, computer simulations have been established as a fundamental tool in the design and development of new dendrimer-based nanocarriers for drug and gene delivery. Moreover, the level of detail contained in the information that can be gathered by performing atomistic-scale simulations cannot be obtained with any other available experimental technique. In this chapter we describe the main computational toolbox that can be exploited in the different stages of novel dendritic nanocarrier production-from the initial conception to the stage of biological intermolecular interactions.
View Article and Find Full Text PDFsiRNAs are emerging as promising therapeutic agents due to their ability to inhibit specific genes in many diseases. However, these tools require specific vehicles in order to be safely delivered to the targeted site. Among different siRNA delivery systems, self-assembled nanomicelles based on amphiphilic cationic dendrons (ACDs) have recently outperformed nanovectors based on covalent carriers.
View Article and Find Full Text PDFThis chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
View Article and Find Full Text PDFThe recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition.
View Article and Find Full Text PDFBiology is dominated by polyanions (cell membranes, nucleic acids, and polysaccharides just to name a few), and achieving selective recognition between biological polyanions and synthetic systems currently constitutes a major challenge in many biomedical applications, nanovectors-assisted gene delivery being a prime example. This review work summarizes some of our recent efforts in this field; in particular, by using a combined experimental/computation approach, we investigated in detail some critical aspects in self-assembled nanomicelles and two major polyanions-DNA and heparin.
View Article and Find Full Text PDFThe maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process.
View Article and Find Full Text PDFMRS Energy Sustain
September 2020
Energy, water, and food shortages, along with irreversible environmental damage and climate changes, are bound to happen within a decade if the current course of action is maintained, preparing the "perfect storm"-a chain of interrelated events that could lead to major stress on the global system. Energy plays a central role in the complex balance between humankind and the planet: poor strategies for the energy system will lead to disaster; but immediate, radical action can still mitigate what will otherwise be an unprecedented crisis. Reduction of the carbon intensity at the level of primary energy demand is one of the most impactful strategies.
View Article and Find Full Text PDFThis review work reports a collection of coupled experimental/computational results taken from our own experience in the field of self-assembled dendrimers for heparin binding. These studies present and discuss both the potentiality played by this hybrid methodology to the design, synthesis, and development of possible protamine replacers for heparin anticoagulant activity reversal in biomedical applications, and the obstacles this field has still to overcome before these molecules can be translated into nanomedicines available in clinical settings.
View Article and Find Full Text PDFSmall interfering RNAs (siRNAs) represent a new approach towards the inhibition of gene expression; as such, they have rapidly emerged as promising therapeutics for a plethora of important human pathologies including cancer, cardiovascular diseases, and other disorders of a genetic etiology. However, the clinical translation of RNA interference (RNAi) requires safe and efficient vectors for siRNA delivery into cells. Dendrimers are attractive nanovectors to serve this purpose, as they present a unique, well-defined architecture and exhibit cooperative and multivalent effects at the nanoscale.
View Article and Find Full Text PDFIn part I of this review, the authors showed how poly(amidoamine) (PAMAM)-based dendrimers can be considered as promising delivering platforms for siRNA therapeutics. This is by virtue of their precise and unique multivalent molecular architecture, characterized by uniform branching units and a plethora of surface groups amenable to effective siRNA binding and delivery to e.g.
View Article and Find Full Text PDFHuman Respiratory Syncytial Virus (RSV) is the primary cause of bronchopneumonia in infants and children worldwide. Clinical studies have shown that early treatments of RSV patients with ribavirin improve prognosis, even if the use of this drug is limited due to myelosuppression and toxicity effects. Furthermore, effective vaccines to prevent RSV infection are currently unavailable.
View Article and Find Full Text PDFA number of new F-triazolequinolones (FTQs) and alkoxy-triazolequinolones (ATQs) were designed, synthesized and evaluated for their activity against Mycobacterium tuberculosis H37Rv. Five out of 21 compounds exhibited interesting minimum inhibitory concentration (MIC) values (6.6-57.
View Article and Find Full Text PDFEnteroviruses are among the most common and important human pathogens for which there are no specific antiviral agents approved by the US Food and Drug Administration so far. Particularly, coxsackievirus infections have a worldwide distribution and can cause many important diseases. We here report the synthesis of new 14 quinoxaline derivatives and the evaluation of their cytotoxicity and antiviral activity against representatives of ssRNA, dsRNA and dsDNA viruses.
View Article and Find Full Text PDFBovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance.
View Article and Find Full Text PDFThe actual strategy to improve current therapies in advanced prostate cancer involves targeting genes activated by androgen withdrawal, either to delay or prevent the emergence of the castration-refractory phenotype. However, these genes are often implicated in several physiological processes, and long-term inhibition of survival proteins might be accompanied with cytotoxic effects. To avoid this problem, an alternative therapeutic strategy relies on the identification and use of compounds that disrupt specific protein-protein interactions involved in androgen withdrawal.
View Article and Find Full Text PDFIn this paper we report the synthesis, in vitro anticancer activity, and the experimental/computational characterization of mechanism of action of a new series of E isomers of triazolo[4,5-b/c]pyridin-acrylonitrile derivatives (6c-g, 7d-e, 8d-e, 9c-f, 10d-e, 11d-e). All new compounds are endowed with moderate to interesting antiproliferative activity against 9 different cancer cell lines derived from solid and hematological human tumors. Fluorescence-based assays prove that these molecules interfere with tubulin polymerization.
View Article and Find Full Text PDFGastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs express the receptor tyrosine kinase KIT, and the majority of GISTs present KIT gain-of-function mutations that cluster in the 5' end of the receptor juxtamembrane domain. On the other hand, little information is known about GISTs carrying mutations in the 3' end of the KIT juxtamembrane domain.
View Article and Find Full Text PDFThis chapter presents the three-dimensional (3D) model of the Sigma1 receptor protein as obtained from homology modeling techniques. We show the applicability of this structure to docking-based virtual screening and discuss combined in silico/in vitro mutagenesis studies performed to validate the structural features of the Sigma1 receptor model and to qualify/quantify the prominent role of specific amino acid residues in ligand binding. The validation of the virtual 3D Sigma1 receptor model and its reliable applicability to docking-based virtual screening is of significance for rational ligand design, even in light of the recently reported crystal structure for the Sigma1 receptor.
View Article and Find Full Text PDFDesmoid-type fibromatosis (DF) is a rare mesenchymal lesion with high risk of local recurrence. Specific β-catenin mutations (S45F) appeared to be related to this higher risk compared to T41A-mutated or wild-type (WT). We explored the influence of both mutations and WT on structure stability and affinity of β-catenin for α-catenin and the pattern of gene expression that may influence DF behavior.
View Article and Find Full Text PDFSpirocyclic thiophene derivatives represent promising σ ligands with high σ affinity and selectivity over the σ subtype. To increase ligand efficiency, the thiophene ring was replaced bioisosterically by a thiazole ring, and the pyran ring was opened. Late-stage diversification by regioselective C-H arylation of thiazoles 9 a-c resulted in a set of 53 compounds with high diversity.
View Article and Find Full Text PDFIn this work we applied a blend of computational and synthetic techniques with the aim to design, synthesize, and characterize new σ1 receptor (σ1R) ligands. Starting from the structure of previously reported, high-affinity benzoxazolone-based σ1 ligands, the three-dimensional homology model of the σ1R was exploited for retrieving the molecular determinants to fulfill the optimal pharmacophore requirements. Accordingly, the benzoxazolone moiety was replaced by other heterocyclic scaffolds, the relevant conformational space in the σ1R binding cavity was explored, and the effect on σ1R binding affinity was ultimately assessed.
View Article and Find Full Text PDFSelf-assembly is a fundamental concept and a powerful approach in molecular science. However, creating functional materials with the desired properties through self-assembly remains challenging. In this work, through a combination of experimental and computational approaches, the self-assembly of small amphiphilic dendrons into nanosized supramolecular dendrimer micelles with a degree of structural definition similar to traditional covalent high-generation dendrimers is reported.
View Article and Find Full Text PDFIn this work, we present and discuss a comprehensive set of both newly and previously synthesized compounds belonging to 5 distinct molecular classes of linear aromatic N-polycyclic systems that efficiently inhibits bovine viral diarrhea virus (BVDV) infection. A coupled in silico/in vitro investigation was employed to formulate a molecular rationale explaining the notable affinity of all molecules to BVDV RNA dependent RNA polymerase (RdRp) NS5B. We initially developed a three-dimensional common-feature pharmacophore model according to which two hydrogen bond acceptors and one hydrophobic aromatic feature are shared by all molecular series in binding the viral polymerase.
View Article and Find Full Text PDF