Drought significantly challenges global food security, necessitating a comprehensive understanding of plant molecular responses for effective mitigation strategies. Epigenetic modifications, such as DNA methylation and histone modifications, are key in regulating genes and hormones essential for drought response. While microRNAs (miRNAs) primarily regulate gene expression post-transcriptionally, they can also interact with epigenetic pathways as potential effectors that influence chromatin remodeling.
View Article and Find Full Text PDFSodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes.
View Article and Find Full Text PDFAbiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress.
View Article and Find Full Text PDFArsenic poisoning in agricultural soil is caused by both natural and man-made processes, and it poses a major risk to crop production and human health. Soil quality, agricultural production, runoff, ingestion, leaching, and absorption by plants are all influenced by these processes. Microbial consortia have become a feasible bioremediation technique in response to the urgent need for appropriate remediation solutions.
View Article and Find Full Text PDFWhile it is widely recognized that hydrogen sulfide (HS) promotes plant stress tolerance, the precise processes through which HS modulates this process remains unclear. The processes by which HS promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application.
View Article and Find Full Text PDFPlant growth-promoting microorganisms (PGPMs) have emerged as valuable allies for enhancing plant growth, health, and productivity across diverse environmental conditions. However, the complex molecular mechanisms governing plant-PGPM symbiosis under the climatic hazard of drought, which is critically challenging global food security, remain largely unknown. This comprehensive review explores the involved molecular interactions that underpin plant-PGPM partnerships during drought stress, thereby offering insights into hormonal regulation and epigenetic modulation.
View Article and Find Full Text PDFNickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.
View Article and Find Full Text PDFChromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (HO) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment.
View Article and Find Full Text PDFSalicylic acid (SA) is one of the potential plant growth regulators (PGRs) that regulate plant growth and development by triggering many physiological and metabolic processes. It is also known to be a crucial component of plant defense mechanisms against environmental stimuli. In stressed plants, it is documented that it can effectively modulate a myriad of metabolic processes including strengthening of oxidative defense system by directly or indirectly limiting the buildup of reactive nitrogen and oxygen radicals.
View Article and Find Full Text PDFThe participation of nitric oxide (NO) in wheat plant tolerance to salinity stress (SS) brought about by hydrogen sulphide (HS) via modifying the ascorbate-glutathione (AsA-GSH) cycle was studied. The SS-plants received either 0.2 mM sodium hydrosulfide (NaHS; HS donor), or NaHS plus 0.
View Article and Find Full Text PDFMelatonin (MT) and hydrogen sulphide (HS) are recognised as vital biomolecules actively taking part in plant defence systems as free radical scavengers and antioxidants against a myriad of biotic and abiotic stressors. However, it has been yet unknown in plants subjected to arsenic (As) toxicity whether or not HS interacts with MT to regulate endogenous antioxidant defence system. Prior to beginning As stress (As-S) treatments, MT (0.
View Article and Find Full Text PDFThe promising response of chromium-stressed (Cr(VI)-S) plants to hydrogen sulphide (HS) has been observed, but the participation of nitric oxide (NO) synthesis in HS-induced Cr(VI)-S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in HS-mediated Cr(VI)-S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)-S (50 μM KCrO) for further two weeks.
View Article and Find Full Text PDFLead (Pb), like other heavy metals, is not essentially required for optimal plant growth; however, plants uptake it from the soil, which poses an adverse effect on growth and yield. Asparagine (Asp) and thiourea (Thi) are known to assuage the negative impacts of heavy metal pollution on plant growth; however, combined application of Asp and Thi has rarely been tested to discern if it could improve wheat yield under Pb stress. Thus, this experimentation tested the role of individual and combined applications of Asp (40 mM) and Thi (400 mg/L) in improving wheat growth under lead (Pb as PbCl, 0.
View Article and Find Full Text PDFUnlabelled: The principal intent of the investigation was to examine the influence of joint application of methyl jasmonate (MeJA, 10 μM) and a nitric oxide-donor sodium nitroprusside (SNP, 100 μM) to wheat plants grown under cadmium (Cd as CdCl, 100 μM) stress. Cd stress suppressed plant growth, chlorophylls (), and PSII maximum efficiency ( / ), but it elevated leaf and root Cd, and contents of leaf proline, phytochelatins, malondialdehyde, and hydrogen peroxide, as well as the activity of lipoxygenase. MeJA and SNP applied jointly or singly improved the concentrations of key antioxidant biomolecules, e.
View Article and Find Full Text PDFTwo independent trials were conducted to examine the involvement of nitric oxide (NO) in MT-mediated tolerance to Cd toxicity in wheat plants. Cadmium toxicity considerably led to a decrease in plant growth, total chlorophyll, PSII maximum efficiency (Fv/Fm), leaf water potential, potassium (K) and calcium (Ca). Simultaneously, it caused an increase in levels of leaf malondialdehyde (MDA), hydrogen peroxide (HO), electron leakage (EL), cadmium (Cd) and nitric oxide (NO) compared to those in control plants.
View Article and Find Full Text PDF