Publications by authors named "Fergus Boyles"

Many studies have prophesied that the integration of machine learning techniques into small-molecule therapeutics development will help to deliver a true leap forward in drug discovery. However, increasingly advanced algorithms and novel architectures have not always yielded substantial improvements in results. In this Perspective, we propose that a greater focus on the data for training and benchmarking these models is more likely to drive future improvement, and explore avenues for future research and strategies to address these data challenges.

View Article and Find Full Text PDF

Nanobodies are essential proteins of the adaptive immune systems of camelid and shark species, complementing conventional antibodies. Properties such as their relatively small size, solubility and high thermostability make VHH (variable heavy domain of the heavy chain) and VNAR (variable new antigen receptor) modalities a promising therapeutic format and a valuable resource for a wide range of biological applications. The volume of academic literature and patents related to nanobodies has risen significantly over the past decade.

View Article and Find Full Text PDF

Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2).

View Article and Find Full Text PDF

The antibody repertoires of individuals and groups have been used to explore disease states, understand vaccine responses, and drive therapeutic development. The arrival of B-cell receptor repertoire sequencing has enabled researchers to get a snapshot of these antibody repertoires, and as more data are generated, increasingly in-depth studies are possible. However, most publicly available data only exist as raw FASTQ files, making the data hard to access, process, and compare.

View Article and Find Full Text PDF

Machine learning scoring functions for protein-ligand binding affinity have been found to consistently outperform classical scoring functions when trained and tested on crystal structures of bound protein-ligand complexes. However, it is less clear how these methods perform when applied to docked poses of complexes. We explore how the use of docked rather than crystallographic poses for both training and testing affects the performance of machine learning scoring functions.

View Article and Find Full Text PDF

Motivation: Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand complex, with limited information about the chemical or topological properties of the ligand itself.

Results: We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features.

View Article and Find Full Text PDF