Publications by authors named "Fergal Brian Coulter"

Airway stents are life-saving medical devices used to treat malignant or benign central airway stenoses. Unfortunately, these devices, typically manufactured from silicone alone and/or nitinol, can result in serious complications, such as stent migration, bacterial colonization, and tissue granulation, eventually forcing stent removal. Customized airway stents exhibit reduced migration and they can be tailored to address other complications by releasing drugs, such as the antibiotic levofloxacin and the antifibrotic drug nintedanib.

View Article and Find Full Text PDF

Self-healing silicones that are able to restore functionalities and extend the lifetime of soft devices hold great potential in many applications. However, currently available silicones need to be triggered to self-heal or suffer from creep-induced irreversible deformation during use. Here, a platform is proposed to design and print silicone objects that are programmed at the molecular and architecture levels to achieve self-healing at room temperature while simultaneously resisting creep.

View Article and Find Full Text PDF

Digital light processing (DLP) 3D printing is a promising technique for the rapid manufacturing of customized medical devices with high precision. To be successfully translated to a clinical setting, challenges in the development of suitable photopolymerizable materials have yet to be overcome. Besides biocompatibility, it is often desirable for the printed devices to be biodegradable, elastic, and with a therapeutic function.

View Article and Find Full Text PDF

Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients. Standard-of-care airway stents are silicone tubes, which provide immediate relief but are prone to migration. Thus, they require additional surgeries to be removed, which may cause tissue damage.

View Article and Find Full Text PDF