Nanoparticles (NPs) have emerged as versatile and widely used platforms for a variety of biomedical applications. For delivery purposes, while some of NPs' physiochemical aspects such as size and shape have been extensively studied, their mechanical properties remain understudied. Recent studies have reported NPs' rigidity as a significant factor for their cell interactions and uptake.
View Article and Find Full Text PDFElectrochemical devices that transform electrical energy to mechanical energy through an electrochemical process have numerous applications ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics. To date, achievement of large deformation strains and fast response times remains a challenge for electrochemical actuator devices operating in liquid wherein drag forces restrict the actuator motion and electrode materials/structures limit the ion transportation and accumulation. We report results for electrochemical actuators, electrochemical mass transfers, and electrochemical dynamics made from organic semiconductors (OSNTs).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Liposomes are amongst the most effective delivery vehicles developed to date. Despite many advantages including biocompatibility, biodegradability, and the ability to carry both hydrophilic and lipophilic compounds, liposomes suffer from low physical stability. This limitation can be effectively addressed by inclusion of a polymeric scaffold within the core of liposomes.
View Article and Find Full Text PDFConducting polymer (CP) actuators are promising devices for biomedical applications such as artificial muscles and drug delivery systems. Here, we report a tri-layer actuator based on poly(pyrrole) (PPy) microtubes (PPy MTs) doped with poly(sodium-p-styrenesulfonate) (PSS) and constructed on a passive layer of gold-coated poly-propylene (PP) film. The PPy MTs were fabricated using electrochemical deposition of PPy around poly(lactic-co-glycolic acid) (PLGA) fiber templates, followed by template removal.
View Article and Find Full Text PDFTreatment of glioblastoma, the most common and aggressive type of primary brain tumors, is a major medical challenge and the development of new alternatives requires simple yet realistic models for these tumors. In vitro spheroid models offer attractive platforms to mimic the tumor behavior in vivo and have thus, been increasingly applied for assessment of drug efficacy in various tumors. The aim of this study was to produce and characterize size-controlled U251 glioma spheroids towards application in glioma drug evaluation studies.
View Article and Find Full Text PDF