Publications by authors named "Fereshteh Mirahmadi"

The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load-bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural-functional contribution of elastin in the temporomandibular joint disc.

View Article and Find Full Text PDF

The temporomandibular joint disc is a structure, characterized as heterogeneous fibrocartilage, and is composed of macromolecular biopolymers. Despite a large body of characterization studies, the contribution of matrix biopolymers on the dynamic viscoelastic behavior of the disc is poorly understood. Given the high permeability and low concentration of glycosaminoglycans in the disc, it has been suggested that poro-elastic behavior can be neglected and that the intrinsic viscoelastic nature of solid matrix plays a dominant role in governing its time-dependent behavior.

View Article and Find Full Text PDF

Nutrition of articular cartilage relies mainly on diffusion and convection of solutes through the interstitial fluid due to the lack of blood vessels. The diffusion is controlled by two factors: steric hindrance and electrostatic interactions between the solutes and the matrix components. Aging comes with changes in the cartilage structure and composition, which can influence the diffusion.

View Article and Find Full Text PDF

Objective: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle.

View Article and Find Full Text PDF

In this study, a nanofibrous electrospun substrate based on the silk fibroin (SF) and gelatin (GT) polymers were prepared and evaluated. The SF/GT blended solutions were prepared with various ratios of GT in formic acid and electrospun to obtain bead-free fibers. Results showed that addition of GT to SF increased nanofiber's diameter, bulk hydrophilicity, surface wettability, mass loss percentage, but decreased Young's modulus, tensile strength, and porosity of the SF/GT mats.

View Article and Find Full Text PDF

Objective: Most people experience bone damage and bone disorders during their lifetimes. The use of autografts is a suitable way for injury recovery and healing. Mesenchymal stem cells (MSCs) are key players in tissue engineering and regenerative medicine.

View Article and Find Full Text PDF

Articular cartilage covers the temporomandibular joint (TMJ) and provides smooth and nearly frictionless articulation while distributing mechanical loads to the subchondral bone. The thickness of the cartilage is considered to be an indicator of the stage of development, maturation, aging, loading history, and disease. The aim of our study was to develop a method for ex vivo assessment of the thickness of the cartilage that covers the TMJ and to compare that with two other existing methods.

View Article and Find Full Text PDF

The osseous tissue repair and regeneration have great importance in orthopedic and maxillofacial surgery. Tissue engineering makes it possible to cure different tissue abnormalities using autologous grafts. It is now obvious that mechanical loading has essential role in directing cells to differentiation.

View Article and Find Full Text PDF

Background: To date, there are no small internal diameter (<5mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs.

View Article and Find Full Text PDF

As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter.

View Article and Find Full Text PDF

Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration.

View Article and Find Full Text PDF