Publications by authors named "Fereshteh Bashiri"

Objectives: To compare and externally validate popular deep learning model architectures and data transformation methods for variable-length time series data in 3 clinical tasks (clinical deterioration, severe acute kidney injury [AKI], and suspected infection).

Materials And Methods: This multicenter retrospective study included admissions at 2 medical centers that spanned 2007-2022. Distinct datasets were created for each clinical task, with 1 site used for training and the other for testing.

View Article and Find Full Text PDF

Objectives: Early identification of infection improves outcomes, but developing models for early identification requires determining infection status with manual chart review, limiting sample size. Therefore, we aimed to compare semi-supervised and transfer learning algorithms with algorithms based solely on manual chart review for identifying infection in hospitalized patients.

Materials And Methods: This multicenter retrospective study of admissions to 6 hospitals included "gold-standard" labels of infection from manual chart review and "silver-standard" labels from nonchart-reviewed patients using the Sepsis-3 infection criteria based on antibiotic and culture orders.

View Article and Find Full Text PDF

Background: Machine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their performance in a cohort of cardiac arrest patients with COVID-19.

View Article and Find Full Text PDF

Objective: To develop machine learning models for classifying the severity of opioid overdose events from clinical data.

Materials And Methods: Opioid overdoses were identified by diagnoses codes from the Marshfield Clinic population and assigned a severity score via chart review to form a gold standard set of labels. Three primary feature sets were constructed from disparate data sources surrounding each event and used to train machine learning models for phenotyping.

View Article and Find Full Text PDF

Multi-modal image registration is the primary step in integrating information stored in two or more images, which are captured using multiple imaging modalities. In addition to intensity variations and structural differences between images, they may have partial or full overlap, which adds an extra hurdle to the success of registration process. In this contribution, we propose a multi-modal to mono-modal transformation method that facilitates direct application of well-founded mono-modal registration methods in order to obtain accurate alignment of multi-modal images in both cases, with complete (full) and incomplete (partial) overlap.

View Article and Find Full Text PDF

A fully-labeled image dataset provides a unique resource for reproducible research inquiries and data analyses in several computational fields, such as computer vision, machine learning and deep learning machine intelligence. With the present contribution, a large-scale fully-labeled image dataset is provided, and made publicly and freely available to the research community. The current dataset entitled includes more than 20,000 digital images from three different indoor object categories, including doors, stairs, and hospital signs.

View Article and Find Full Text PDF