Tauroursodeoxycholic acid (TUDCA) is a cytoprotective ER stress inhibitor and chemical chaperone. It has therapeutic potential in a wide array of diseases but a specific macromolecular target or molecular mechanism of action remains obscure. This Letter describes an effective new synthetic approach to taurine conjugation of bile acids which we used to prepare 3α-dansyl TUDCA (4) as a probe for TUDCA actions.
View Article and Find Full Text PDFWe have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death.
View Article and Find Full Text PDFPorphyrins and chlorins such as Foscan® have a natural proclivity to accumulate in cancer cells. This trait has made them good candidates for photosensitizers and as imaging agents in phototherapy. In order to improve on cellular selectivity to lower post-treatment photosensitivity bile acid porphyrin bioconjugates have been prepared and investigated in esophageal cancer cells.
View Article and Find Full Text PDFDeoxycholic acid (DCA), a secondary bile acid (BA), and ursodeoxycholic acid (UDCA), a tertiary BA, cause opposing effects in vivo and in cell suspensions. Fluorescent analogues of DCA and UDCA could help investigate important questions about their cellular interactions and distribution. We have prepared a set of isomeric 3α- and 3β-amino analogues of UDCA and DCA and derivatised these with the discrete fluorophore, 4-nitrobenzo-2-oxa-1,3-diazol (NBD), forming the corresponding four fluorescent adducts.
View Article and Find Full Text PDFUrsodeoxycholic acid (UDCA) is used for the treatment of hepatic inflammatory diseases. Recent studies have shown that UDCA's biological effects are partly glucocorticoid receptor (GR) mediated. UDCA derivatives were synthesized and screened for ability to induce GR translocation in a high content analysis assay using the esophageal cancer SKGT-4 cell line.
View Article and Find Full Text PDFThe molecular mechanisms and interactions underlying bile acid cytotoxicity are important to understand for intestinal and hepatic disease treatment and prevention and the design of bile acid-based therapeutics. Bile acid lipophilicity is believed to be an important cytotoxicity determinant but the relationship is not well characterized. In this study we prepared new azido and other lipophilic BAs and altogether assembled a panel of 37 BAs with good dispersion in lipophilicity as reflected in RPTLC RMw.
View Article and Find Full Text PDF