Biochem Biophys Res Commun
November 2002
All UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases cloned to date contain a lectin domain at the C-terminus, consisting of three tandem repeat sequences (alpha,beta, and gamma). We previously reported that the alpha repeat of one of the most ubiquitous isozymes, GalNAc-T1, is a functional lectin that recognizes O-linked GalNAc residues on the acceptor polypeptides with multiple acceptor sites; the domain appears not to be involved in the glycosylation of acceptors with a single acceptor site. In this report, we studied the function of the beta and gamma repeats in the GalNAc-T1 lectin domain, by site-directed mutagenesis and analysis of the catalytic properties of mutant enzymes.
View Article and Find Full Text PDFMucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional.
View Article and Find Full Text PDFBiosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p-chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent.
View Article and Find Full Text PDF