Publications by authors named "Ferenc G Rick"

Background: Inflammation plays a key role in the etiology of benign prostatic hyperplasia (BPH) through multiple pathways involving the stimulation of proliferation by cytokines and growth factors as well as the induction of the focal occurrence of epithelial-to-mesenchymal transition (EMT). We have previously reported that GHRH acts as a prostatic growth factor in experimental BPH and in autoimmune prostatitis models and its blockade with GHRH antagonists offer therapeutic approaches for these conditions. Our current study was aimed at the investigation of the beneficial effects of GHRH antagonists in λ-carrageenan-induced chronic prostatitis and at probing the downstream molecular pathways that are implicated in GHRH signaling.

View Article and Find Full Text PDF

Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and acts on the pituitary gland to stimulate the release of growth hormone (GH). GHRH can also be produced by human cancers, in which it functions as an autocrine/paracrine growth factor. We have previously shown that synthetic antagonistic analogues of GHRH are able to successfully suppress the growth of 60 different human cancer cell lines representing over 20 cancers.

View Article and Find Full Text PDF

The discovery, isolation, elucidation of structure, synthesis, and initial testing of the neuropeptide hypothalamic luteinizing hormone-releasing hormone (LHRH), which regulates reproduction, is briefly described. The design, synthesis, and experimental and clinical testing of agonistic analogs of LHRH is extensively reviewed focusing on the development of new methods for the treatment of prostate cancer. Subsequent development of antagonistic analogs of LHRH is then faithfully recounted with special emphasis on therapy of prostate cancer and BPH.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists wanted to see how a hormone called follicle-stimulating hormone (FSH) affects men with prostate cancer who are receiving treatment that lowers male hormones.
  • They held a meeting with experts and looked through many research articles to understand how FSH might cause issues like heart disease, weight problems, and weaker bones.
  • Findings showed that FSH could lead to health problems when men are treated for prostate cancer, but more research is needed to fully understand how it affects their overall health.
View Article and Find Full Text PDF

The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg, Har, Abu, and Nle. Most new analogs had Ala at position 8.

View Article and Find Full Text PDF

The etiology of benign prostatic hyperplasia (BPH) is multifactorial, and chronic inflammation plays a pivotal role in its pathogenesis. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide that has been shown to act as paracrine/autocrine factor in various malignancies including prostate cancer. GHRH and its receptors are expressed in experimental models of BPH, in which antagonists of GHRH suppressed the levels of proinflammatory cytokines and altered the expression of genes related to epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Receptors for LHRH (luteinizing hormone-releasing hormone) are expressed in about 80% of human endometrial, ovarian and prostate cancers and are also found in more than 50% of breast cancers including triple negative breast cancers. In the human body, LHRH receptors are found at significant levels in the pituitary and reproductive organs. Other benign tissues or hematopoietic stem cells express only low levels of receptors for LHRH or no receptors.

View Article and Find Full Text PDF

Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D.

View Article and Find Full Text PDF

It is a pleasure to contribute our presentation at the International Prostate Forum of the Annual Meeting of the American Urological Association (AUA) to this special issue of the Asian Journal of Andrology.

View Article and Find Full Text PDF

Background: We previously showed that growth hormone-releasing hormone (GHRH) agonists are cardioprotective following myocardial infarction (MI). Here, our aim was to evaluate the in vitro and in vivo activities of highly potent new GHRH agonists, and elucidate their mechanisms of action in promoting cardiac repair.

Methods And Results: H9c2 cells were cultured in serum-free medium, mimicking nutritional deprivation.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is the most prevalent of all endocrine cancers. In recent studies, the presence of receptors for pituitary-type growth hormone-releasing hormone (pGHRH-R) has been demonstrated in various human cancers, including human prostate, brain, and other cancer lines. Thyroid malignancies, however, have not yet been investigated in this regard.

View Article and Find Full Text PDF

Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers.

View Article and Find Full Text PDF

Introduction: Increasing evidence suggests that prostate cancer cells undergo unique metabolic reprogramming during transformation. A master regulator of cellular homeostasis, 5'-AMP-activated protein kinase (AMPK), directs metabolic adaptation that supports the growth demands of rapidly dividing cancer cells. The utilization of AMPK as a therapeutic target may therefore provide an effective strategy in the treatment of prostate cancer.

View Article and Find Full Text PDF

Introduction: This study evaluated the effects of an antagonistic analog of growth hormone-releasing hormone, MIA-602, on tumor growth, response to doxorubicin, expression of drug resistance genes, and efflux pump function in human triple negative breast cancers.

Methods: HCC1806 (doxorubicin-sensitive) and MX-1 (doxorubicin-resistant), cell lines were xenografted into nude mice and treated with MIA-602, doxorubicin, or their combination. Tumors were evaluated for changes in volume and the expression of the drug resistance genes MDR1 and NANOG.

View Article and Find Full Text PDF

Background: Androgen deprivation therapy (ADT) has been the standard of care for treating patients with hormone-sensitive advanced prostate cancer (PCa) for 3 decades. The agonists of luteinizing hormone-releasing hormone (LHRH), also called gonadotropin-releasing hormone, are still the most frequently used form of medical ADT.

Adt And Lhrh Analogs: The application of agonists of LHRH has improved and modernized the treatment of advanced PCa; millions of patients have benefited from therapy with LHRH agonists as a preferred alternative to surgical castration, as the psychological effects and perpetuity of orchiectomy are undesirable for most men.

View Article and Find Full Text PDF
Article Synopsis
  • Malignant melanoma is a really dangerous skin cancer, and treating advanced cases is tough.
  • Researchers studied new drugs called GHRH antagonists to see if they could stop melanoma cells from growing.
  • The drug MIA-690 showed it could reduce tumor growth both in a lab and in mice, and it worked by helping a protein called p27 get into the cell's nucleus to control the cell cycle.
View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer burdened with a dismal prognosis due to the lack of effective therapeutic agents. Receptors for LHRH (luteinizing hormone-releasing hormone) can be successfully targeted with AEZS-108 [AN-152], an analog of LHRH conjugated to doxorubicin. Our study evaluates the presence of this target LHRH receptor in human specimens of TNBC and investigates the efficacy and toxicity of AEZS-108 in vivo.

View Article and Find Full Text PDF

Rationale: Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability.

View Article and Find Full Text PDF

Management of castration-resistant prostate cancer (CRPC) is challenging due to lack of efficacious therapy. Luteinizing hormone-releasing hormone analogs appear to act directly on cells based on the LHRH receptors on human prostate adenocarcinoma cells. We explored anticancer activity of a cytotoxic analog of LHRH, AEZS-108 consisting of LHRH agonist linked to doxorubicin.

View Article and Find Full Text PDF

The introduction of new cytotoxic substances as well as agents that target vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) signaling has improved clinical outcome of patients with metastatic colorectal cancer (mCRC). In this review we summarize the most relevant clinical data on VEGF and EGFR targeting regimens in mCRC. The effects of available treatment strategies for mCRC are often temporary, with resistance and disease progression developing in most patients.

View Article and Find Full Text PDF

Advanced hormone-sensitive prostate cancer responds to androgen-deprivation therapy (ADT); however, therapeutic options for recurrent castration-resistant disease are limited. Because growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) are regulated in an autocrine fashion in prostate cancer, inhibition of GHRH-R represents a compelling approach to treatment. We investigated the effects of the latest series of improved, highly potent GHRH antagonists--MIA-602, MIA-606, and MIA-690--on the growth of androgen-dependent as well as castration-resistant prostate cancer (CRPC) cells in vitro and in vivo.

View Article and Find Full Text PDF

The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone.

View Article and Find Full Text PDF

In view of the recent findings of stimulatory effects of GHRH analogs, JI-34, JI-36 and JI-38, on cardiomyocytes, pancreatic islets and wound healing, three series of new analogs of GHRH(1-29) have been synthesized and evaluated biologically in an endeavor to produce more potent compounds. "Agmatine analogs", MR-356 (N-Me-Tyr(1)-JI-38), MR-361(N-Me-Tyr(1), D-Ala(2)-JI-38) and MR-367(N-Me-Tyr(1), D-Ala(2), Asn(8)-JI-38), in which Dat in JI-38 is replaced by N-Me-Tyr(1), showed improved relative potencies on GH release upon subcutaneous administration in vivo and binding in vitro. Modification with N-Me-Tyr(1) and Arg(29)-NHCH3 as in MR-403 (N-Me-Tyr(1), D-Ala(2), Arg(29)-NHCH3-JI-38), MR-406 (N-Me-Tyr(1), Arg(29)-NHCH3-JI-38) and MR-409 (N-Me-Tyr(1), D-Ala(2), Asn(8), Arg(29)-NHCH3-JI-38), and MR-410 (N-Me-Tyr(1), D-Ala(2), Thr(8), Arg(29)-NHCH3-JI-38) resulted in dramatically increased endocrine activities.

View Article and Find Full Text PDF

Introduction: Androgen deprivation therapy (ADT) has been the first-line standard of care for treating patients with hormone-sensitive advanced prostate cancer (PCa) for many decades. The agonists of luteinizing hormone-releasing hormone (LHRH), also called gonadotropin-releasing hormone, are still the most frequently used form of medical ADT.

Areas Covered: This article reviews the available data and most recent information concerning the use of LHRH agonists in advanced PCa.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh2h5f75597l5hahj261hiobrnmqhofln): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once