Publications by authors named "Ferdy S Rondonuwu"

The crystals of Mn-activated fluorides, such as those of the hexafluorometallate family, are widely known for their luminescence properties. The most commonly reported red phosphors are AXF: Mn and BXF: Mn fluorides, where A represents alkali metal ions such as Li, Na, K, Rb, Cs; X=Ti, Si, Ge, Zr, Sn, B = Ba and Zn; and X = Si, Ge, Zr, Sn, and Ti. Their performance is heavily influenced by the local structure around dopant ions.

View Article and Find Full Text PDF

To examine the mechanisms of electron injection to TiO2 in retinoic acid (RA) and carotenoic acids (CAs), including RA5, CA6, CA7, CA8, CA9, and CA11 having the number of conjugated double bonds n = 5, 6, 7, 8, 9, and 11, respectively, their subpicosecond time-resolved absorption spectra were recorded free in solution and bound to TiO2 nanoparticles in suspension. The time-resolved spectra were analyzed by singular-value decomposition (SVD) followed by global fitting based on an energy diagram consisting of the 3A(g)(-), 1B(u)(-), 1B(u)(+), and 2A(g)(-) singlet excited states, whose energies had been determined as functions of 1/(2n + 1) by the use of carotenoids with n = 9-13. It was found that electron injection took place from both the 1B(u)(+) and 2A(g)(-) states in RA5, CA6, CA7, and CA8, whereas only from the 1B(u)(+) state in CA9 and CA11.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers immobilized the photosynthetic bacterial light-harvesting antenna complex LH2 onto TiO(2) nanoparticles to study its properties.
  • They found that the excited-state lifetime of a specific part of LH2 (B850) decreased when attached to TiO(2), but ruled out the possibility of this being caused by electron transfer.
  • The observed changes in LH2's properties were attributed to structural deformation caused by interfacial interactions, explained through an elliptical exciton model.
View Article and Find Full Text PDF

This minireview article highlights the energetics and the dynamics of the 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids discovered very recently. Those "hidden" covalent states have been revealed by measurements of resonance-Raman excitation profiles of crystalline carotenoids. The dependence of the energies of the low-lying singlet states, including the 1(1)B(u)(+), 3(1)A(g)(-), 1(1)B(u)(-), and 2(1)A(g)(-) states, on the number of conjugated double bonds (n) is in agreement with the extrapolation of those state energies calculated by Tavan and Schulten for shorter polyenes (P.

View Article and Find Full Text PDF