Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED.
View Article and Find Full Text PDFCollaborative robots, designed to work alongside humans for manipulating end-effectors, greatly benefit from the implementation of active constraints. This process comprises the definition of a boundary, followed by the enforcement of some control algorithm when the robot tooltip interacts with the generated boundary. Contact with the constraint boundary is communicated to the human operator through various potential forms of feedback.
View Article and Find Full Text PDFIn recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype.
View Article and Find Full Text PDFOver the past 10 years, minimally invasive surgery (MIS) has shown significant benefits compared to conventional surgical techniques, with reduced trauma, shorter hospital stays, and shorter patient recovery times. In neurosurgical MIS procedures, inserting a straight tool (e.g.
View Article and Find Full Text PDFThere is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution.
View Article and Find Full Text PDFUnlabelled: Steerable needles have the potential for accurate needle tip placement even when the optimal path to a target tissue is curvilinear, thanks to their ability to steer, which is an essential function to avoid piercing through vital anatomical features. Autonomous path-following controllers for steerable needles have already been studied, however they remain challenging, especially because of the complexities associated to needle localization. In this context, the advent of fiber Bragg Grating (FBG)-inscribed multicore fibers (MCFs) holds promise to overcome these difficulties.
View Article and Find Full Text PDFTargeted drug delivery in the brain is instrumental in the treatment of lethal brain diseases, such as glioblastoma multiforme, the most aggressive primary central nervous system tumour in adults. Infusion-based drug delivery techniques, which directly administer to the tissue for local treatment, as in convection-enhanced delivery (CED), provide an important opportunity; however, poor understanding of the pressure-driven drug transport mechanisms in the brain has hindered its ultimate success in clinical applications. In this review, we focus on the biomechanical and biochemical aspects of infusion-based targeted drug delivery in the brain and look into the underlying molecular level mechanisms.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
March 2022
Background: Accurate prosthesis placement in arthroplasty is an important factor in the long-term success of these interventions. Many types of guidance technology have been described to date often suffering from high costs, complex theater integration, time inefficiency, and problems with day-to-day usability. We present a novel, intraoperative robotics platform, capable of rapid, real-time manufacture of low-cost patient-specific guides while overcoming many of the issues with existing approaches.
View Article and Find Full Text PDFThe accuracy of the implant's post-operative position and orientation in reverse shoulder arthroplasty is known to play a significant role in both clinical and functional outcomes. Whilst technologies such as navigation and robotics have demonstrated superior radiological outcomes in many fields of surgery, the impact of augmented reality (AR) assistance in the operating room is still unknown. Malposition of the glenoid component in shoulder arthroplasty is known to result in implant failure and early revision surgery.
View Article and Find Full Text PDFBackground: The research and development of augmented-reality (AR) technologies in surgical applications has seen an evolution of the traditional user-interfaces (UI) utilised by clinicians when conducting robot-assisted orthopaedic surgeries. The typical UI for such systems relies on surgeons managing 3D medical imaging data in the 2D space of a touchscreen monitor, located away from the operating site. Conversely, AR can provide a composite view overlaying the real surgical scene with co-located virtual holographic representations of medical data, leading to a more immersive and intuitive operator experience.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
February 2022
Visual augmented reality (AR) has the potential to improve the accuracy, efficiency and reproducibility of computer-assisted orthopaedic surgery (CAOS). AR Head-mounted displays (HMDs) further allow non-eye-shift target observation and egocentric view. Recently, a markerless tracking and registration (MTR) algorithm was proposed to avoid the artificial markers that are conventionally pinned into the target anatomy for tracking, as their use prolongs surgical workflow, introduces human-induced errors, and necessitates additional surgical invasion in patients.
View Article and Find Full Text PDFObjective: To develop and assess a novel guidance technique and instrumentation system for minimally invasive short-stemmed total shoulder arthroplasty that will help to reduce the complications associated with traditional open replacement such as poor muscle healing and neurovascular injury. We have answered key questions about the developed system including (1) can novel patient-specific guides be accurately registered and used within a minimally invasive environment?; (2) can accuracy similar to traditional techniques be achieved?
Methods: A novel intra-articular patient-specific guide was developed for use with a new minimally invasive posterior surgical approach that guides bone preparation without requiring muscle resection or joint dislocation. Additionally, a novel set of instruments were developed to enable bone preparation within the minimally invasive environment.
Background: The brain of sheep has primarily been used in neuroscience as an animal model because of its similarity to the human brain, in particular if compared to other models such as the lissencephalic rodent brain. Their brain size also makes sheep an ideal model for the development of neurosurgical techniques using conventional clinical CT/MRI scanners and stereotactic systems for neurosurgery.
Methods: In this study, we present the design and validation of a new CT/MRI compatible head frame for the ovine model and software, with its assessment under two real clinical scenarios.
Introduction: Needle-based neurosurgical procedures require high accuracy in catheter positioning to achieve high clinical efficacy. Significant challenges for achieving accurate targeting are (i) tissue deformation (ii) clinical obstacles along the insertion path (iii) catheter control.
Objective: We propose a novel path-replanner able to generate an obstacle-free and curvature bounded three-dimensional (3D) path at each time step during insertion, accounting for a constrained target pose and intraoperative anatomical deformation.
Percutaneous interventions via minimally invasive surgical systems can provide patients with better outcomes and faster recovery times than open surgeries. Accurate needle insertions are vital for successful procedures, and actively steered needles can increase system precision. Here, we describe how biology inspired the design of a novel Programmable Bevel-Tip Needle (PBN), mimicking the mechanics and control methods of certain insects ovipositors.
View Article and Find Full Text PDFHydraulic permeability is a topic of deep interest in biological materials because of its important role in a range of drug delivery-based therapies. The strong dependence of permeability on the geometry and topology of pore structure and the lack of detailed knowledge of these parameters in the case of brain tissue makes the study more challenging. Although theoretical models have been developed for hydraulic permeability, there is limited consensus on the validity of existing experimental evidence to complement these models.
View Article and Find Full Text PDFPurpose: The purpose of this in vitro cadaveric study was to examine the contributions of each surgical stage during cam femoroacetabular impingement (FAI) surgery (i.e., intact-cam hip, T-capsulotomy, cam resection, and capsular repair) toward hip range of motion, translation, and microinstability.
View Article and Find Full Text PDFPenetration of a flexible and steerable needle into a soft target material is a complex problem to be modelled, involving several mechanical challenges. In the present paper, an adaptive finite element algorithm is developed to simulate the penetration of a steerable needle in brain-like gelatine material, where the penetration path is not predetermined. The geometry of the needle tip induces asymmetric tractions along the tool-substrate frictional interfaces, generating a bending action on the needle in addition to combined normal and shear loading in the region where fracture takes place during penetration.
View Article and Find Full Text PDFThe increasing use of surgical robotics has provoked the necessity for new medical imaging methods. Many assistive surgical robotic systems influence the surgeon's movements based on a model of constraints and boundaries driven by anatomy. This study aims to demonstrate that Near-Infrared Fluorescence (NIRF) imaging could be applied in surgical applications to provide subsurface mapping of capillaries beneath soft tissue as a method for imaging active constraints.
View Article and Find Full Text PDFAlthough convection-enhanced delivery (CED) can successfully facilitate a bypass of the blood brain barrier, its treatment efficacy remains highly limited in clinic. This can be partially attributed to the brain anisotropic characteristics that lead to the difficulties in controlling the drug spatial distribution. Here, the responses of six different drugs to the tissue anisotropy are examined through a parametric study performed using a multiphysics model, which considers interstitial fluid flow, tissue deformation and interlinked drug transport processes in CED.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
April 2019
Purpose: In the context of minimally invasive neurosurgery, steerable needles such as the one developed within the Horizon2020-funded EDEN2020 project (Frasson et al. in Proc Inst Mech Eng Part H J Eng Med 224(6):775-88, 2010. https://doi.
View Article and Find Full Text PDFBackground: Surgical management of cam femoroacetabular impingement (FAI) aims to preserve the native hip and restore joint function, although it is unclear how the capsulotomy, cam deformity, and capsular repair influence joint mechanics to balance functional mobility.
Purpose: To examine the contributions of the capsule and cam deformity to hip joint mechanics. Using in vitro, cadaveric methods, we examined the individual effects of the surgical capsulotomy, cam resection, and capsular repair on passive range of motion and resistance of applied torque.
The use of robotic systems combined with force sensing is emerging as the gold standard for in vitro biomechanical joint testing, due to the advantage of controlling all six degrees of freedom independently of one another. This paper describes a novel robotic platform and the experimental protocol used for hip joint testing. An experimental protocol implemented optical tracking and registration techniques in order to define the position of the hip joint centre of rotation (COR) in the coordinate system of the robot's end effector.
View Article and Find Full Text PDFSoft robotic manipulators with fluidic actuation are devices with easily deformable structures that comprise a set of chambers that can be pressurized to achieve structural deflection. These devices have experienced a rapid development in recent years, which is not least due to the advantages they offer in terms of robustness, affordability, and compliance. Nowadays, however, soft robotic manipulators are designed mostly by intuition, which complicates design improvement and hampers the advancement of the field.
View Article and Find Full Text PDF