Publications by authors named "Ferdinand Brandl"

Bile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner.

View Article and Find Full Text PDF

The number of patients with chronic wounds is increasing constantly in today's aging society. However, little work is done so far tackling the associated disadvantageous shift of the wound pH. In our study, we developed two different approaches on pH-modulating wound dressing materials, namely, bioactive interpenetrating polymer network hydrogels based on poly(ethylene glycol) diacrylate/N-vinylimidazole/alginate (named VI ) and poly(ethylene glycol) diacrylate/2-dimethylaminoethyl methacrylate/N-carboxyethylchitosan (named DMAEMA ).

View Article and Find Full Text PDF

Amine-modified four- and eight-armed poloxamines were prepared and subsequently functionalized with maleimide or furyl groups. Aqueous solutions of these polymers exhibited an immediate gelation at a temperature above 37 °C. Concomitantly, Diels-Alder reactions gradually cross-linked and cured the gels.

View Article and Find Full Text PDF

Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach.

View Article and Find Full Text PDF

The development of chronic wounds has been frequently associated with alkaline pH values. The application of pH-modulating wound dressings can, therefore, be a promising treatment option to promote normal wound healing. This study reports on the development and characterization of acidic hydrogel dressings based on interpenetrating poly(ethylene glycol) diacrylate/acrylic acid/alginate networks.

View Article and Find Full Text PDF

In situ encapsulation is a frequently used method to prepare hydrogels loaded with high quantities of therapeutic proteins. However, many cross-linking reactions, such as Michael-type addition or Diels-Alder (DA) reaction are not tolerant toward nucleophiles; therefore, side-reactions with proteins can occur during cross-linking. This may lead to undesired protein conjugation, activity loss and incomplete protein release.

View Article and Find Full Text PDF

Biodegradable hydrogels were prepared from furan- and maleimide-functionalized eight-armed poly(ethylene glycol) with an average molecular mass of 40 000 Da (8armPEG40k-furan and 8armPEG40k-maleimide) using the Diels-Alder (DA) reaction as a cross-linking mechanism. Hydrophobic 6-aminohexanoic acid (C) and 12-aminododecanoic acid (C) spacers were introduced between the polymer backbone and the functional end-groups; the influence on the gel properties was studied. Modification with C and C spacers induced hydrophobic interactions between the macromonomers leading to association and increased viscosity of the polymer solutions; both effects were influenced by the spacer length.

View Article and Find Full Text PDF

Click reactions have the potential to greatly facilitate the development of drug delivery systems and biomaterials. These reactions proceed under mild conditions, give high yields, and form only inoffensive by-products. The Diels-Alder cycloaddition is one of the click reactions that do not require any metal catalyst; it is one of the most useful reactions in synthetic organic chemistry and material design.

View Article and Find Full Text PDF

Eight-armed PEG, molecular mass 10 kDa, was functionalized with furyl and maleimide groups, respectively; the obtained macromonomers were cross-linked via Diels-Alder chemistry. The mesh size (ξ) of the prepared hydrogels was determined by swelling studies, rheology, and low field NMR spectroscopy. The in vitro release of fluorescein isothiocyanate labeled dextrans (FDs) and bevacizumab was investigated.

View Article and Find Full Text PDF

Eight-armed PEG was functionalized with furyl and maleimide groups (8armPEG20k-Fur and 8armPEG20k-Mal); degradable hydrogels were obtained by cross-linking via Diels-Alder chemistry. To increase the stability to degradation, the macromonomers were modified by introducing a hydrophobic 6-aminohexanoic acid spacer between PEG and the reactive end-groups (8armPEG20k-Ahx-Fur and 8armPEG20k-Ahx-Mal). In an alternative approach, the number of reactive groups per macromonomer was increased by branching the terminal ends of eight-armed PEG with lysine (Lys) and Ahx residues (8armPEG20k-Lys-Ahx-Fur2 and 8armPEG20k-Lys-Ahx-Mal2).

View Article and Find Full Text PDF

Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates.

View Article and Find Full Text PDF

More and more people worldwide are affected by severe eye diseases eventually leading to visual impairment or blindness. In most cases, the treatment involves the application of ophthalmic dosage forms such as eye drops, suspensions or ointments. Unfortunately, some of the therapeutic approaches have major shortcomings, especially in the treatment of the posterior segment of the eye, where many vision-threatening diseases originate.

View Article and Find Full Text PDF

Eight-armed poly(ethylene glycol) was functionalized with furyl and maleimide groups. The two macromonomers were cross-linked by Diels-Alder (DA) reactions and the degradation behavior of the formed hydrogels was investigated. UV spectroscopy showed that maleimide groups were subject to ring-opening hydrolysis above pH 5.

View Article and Find Full Text PDF

The compatibility of selected cross-linking reactions with lysozyme is investigated. Michael-type additions of nucleophilic amino acids to maleimide, vinyl sulfone and acrylamide groups are detected by gel electrophoresis. The degree of modification depends on the polymer and the pH.

View Article and Find Full Text PDF

The reversible attachment of proteins to polymers is one potential strategy to control protein release from hydrogels. In this study, we report the reversible attachment of lysozyme to poly(ethylene glycol) (PEG) by degradable carbamate linkers. Phenyl groups with different substituents were used to control the rate of carbamate hydrolysis and the resulting protein release.

View Article and Find Full Text PDF

The Diels-Alder (DA) reaction was investigated as a cross-linking mechanism for poly(ethylene glycol) (PEG) based hydrogels. Two complementary macromonomers were synthesized by functionalizing star-shaped PEG with furyl and maleimide groups. Gel formation occurred in water at 37 °C; the gelation time ranged between 171 ± 25 min and 14 ± 1 min depending on the used hydrogel formulation.

View Article and Find Full Text PDF

Adipose tissue engineering requires biomaterials that promote the differentiation of seeded adipocytes. Here, we report on the development and characterization of in situ forming, poly(ethylene glycol) (PEG) based hydrogels for soft tissue augmentation. Branched PEG-amines were modified with collagenase-sensitive peptides and cross-linked with branched PEG-succinimidyl propionates without the use of free-radical initiators (enzymatically degradable hydrogels).

View Article and Find Full Text PDF

Tethering drug substances to a gel network is an effective way of controlling the release kinetics of hydrogel-based drug delivery systems. Here, we report on in situ forming, biodegradable hydrogels that allow for the covalent attachment of peptides or proteins. Hydrogels were prepared by step-growth polymerization of branched poly(ethylene glycol).

View Article and Find Full Text PDF

Hydrogels are extensively studied as matrices for the controlled release of macromolecules. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. However, these experiments are time-consuming and their reliability is often poor.

View Article and Find Full Text PDF

Hydrogels play an important role in drug delivery and tissue engineering applications due to their excellent biocompatibility and their variable mechanical and physical properties, which allow their optimization for many different aspects of the intended use. In this study, we examined the suitability of poly(ethylene glycol) (PEG)-based hydrogels as release systems for nanometer-sized drugs or drug carriers, like nanoparticles, using the radically cross-linkable oligo(poly(ethylene glycol)fumarate) (OPF) together with two cross-linking agents. Different fluorescent nanoparticulate probes with respect to size and physical structure were incorporated in the cross-linked hydrogels, and the obtained release profiles were correlated with the physical properties and the chemical structure of the gels, indicating a strong dependence of the release on the chosen PEG prepolymers.

View Article and Find Full Text PDF

Hyalocytes, the cells of the vitreous body, are assumed to be involved in physiological as well as patho-physiological processes within the eye. However, current knowledge about the cells is still limited. As different morphological types of hyalocytes are described in the literature, it seems reasonable to try to isolate individual populations prior to characterization of single cell types.

View Article and Find Full Text PDF

Purpose: In cases of severe retinal diseases, the vitreous body has to be removed and replaced by a suitable biomaterial. Currently, however, no satisfying long-term vitreous substitute is in clinical use. A novel therapeutic concept represents the combination of hyalocytes with suitable biomaterials.

View Article and Find Full Text PDF

Ascorbic acid is known to influence proliferation and functional properties of several cell types and is therefore widely used in tissue engineering. In this study, the effect of ascorbic acid on the proliferation and functional properties of hyalocytes was evaluated. Hyalocytes were cultured with different amounts of ascorbic acid in classical two-dimensional (2-D) cultures and a three-dimensional (3-D) pellet culture system.

View Article and Find Full Text PDF

When designing suitable biomaterials for tissue-engineering applications, biological and chemical parameters are frequently taken into account, while the equally important physical design variables have often been neglected. For a rational design of biomaterials, however, all variables influencing cell function and tissue morphogenesis have to be considered. This review will stress the development of cross-linked hydrogels and outline the impact of their physical properties on cell function and tissue morphogenesis.

View Article and Find Full Text PDF