Recent developments in telecommunication world have allowed customers to share the storage and processing capabilities of their devices by providing services through fast and reliable connections. This evolution, however, requires building an incentive system to encourage information exchange in future telecommunication networks. In this study, we propose a mechanism to share bandwidth and processing resources among subscribers using smart contracts and a blockchain-based incentive mechanism, which is used to encourage subscribers to share their resources.
View Article and Find Full Text PDFUnderstanding the interaction between drug molecules and proteins is one of the main challenges in drug design. Several tools have been developed recently to decrease the complexity of the process. Artificial intelligence and machine learning methods offer promising results in predicting the binding affinities.
View Article and Find Full Text PDFInvestigation of protein-ligand interactions obtained from experiments has a crucial part in the design of newly discovered and effective drugs. Analyzing the data extracted from known interactions could help scientists to predict the binding affinities of promising ligands before conducting experiments. The objective of this study is to advance the CIFAP (compressed images for affinity prediction) method, which is relevant to a protein-ligand model, identifying 2D electrostatic potential images by separating the binding site of protein-ligand complexes and using the images for predicting the computational affinity information represented by pIC values.
View Article and Find Full Text PDFThe aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design.
View Article and Find Full Text PDF