Publications by authors named "Ferbinteanu M"

New haloaminopyrazole derivatives differing in the number of pyrazole nuclei - and -, respectively, were synthesized and characterized by H-NMR, C-NMR, IR, UV-Vis, and elemental analysis. The single-crystal X-ray diffraction method was used to describe compounds and . When tested on normal NCTC fibroblasts in vitro, the newly synthesized derivatives were shown to be non-cytotoxic at a dosage of 25 μg/mL.

View Article and Find Full Text PDF

Using as example the [Fe(bpca)(μ-bpca)Gd(NO)]×4CHNO×CHOH system, where Hbpca=bis(2-pyridilcarbonyl)amine), we perform the analysis of bonding components inside the d and f coordination units and between molecular entities from crystal. Aside the nominal long-range interactions between molecular components of the crystal, we considered that the bonding inside the coordination units is also not a covalent regime. We performed Density Functional Theory (DFT) calculations, with plane-waves (PW), in band-structure mode, and with atom-centred bases, by molecular procedures.

View Article and Find Full Text PDF

The present work describes the synthesis of a new triazole based ligand 3-(3,5-dimethyl-1-pyrazol-1-yl)-1-methyl-1-1,2,4-triazole (LM) and demonstration of its coordination diversity giving rise to a family of seven new coordination complexes, namely: [Ni(LM)](ClO)·CHOS (5), [Co(LM)](ClO)·(CH)O (6), [Cd(LM)Cl] (7), [Cu(LM)NO]NO (8), [Fe(LM)](BF) (9), [Zn(LM)](BF) (10) and [Zn(LM)NO]NO (11), whose crystal structure was determined by single-crystal X-ray diffraction. Cytotoxic activity was evaluated against the MDA-MB-468 cancer cell line, which serves as a model for triple-negative breast cancer, and compared to the precursor molecule (L), as well as their coordination complexes (HO){[NiL](ClO)} (1), [CoL](ClO)·2HO (2), [CdLCl] (3) and [CuL](NO) (4), for which the crystal structure was earlier determined. Notably, cadmium complexes 3 and 7 exhibit remarkable cytotoxicity and demonstrated a high selectivity index towards cancer cells when compared to peripheral blood mononuclear cells.

View Article and Find Full Text PDF

Four mononuclear complexes (HO){[NiL](ClO)} (), [CoL](ClO)·2HO (), [CdLCl] () and [CuL](NO) () have been prepared employing a newly synthesized 1,2,4-triazole ligand: 3-(3,5-dimethyl-1-pyrazol-1-yl)-1-1,2,4-triazole (). The structures of the complexes, which crystallized in (), (), (), and (), are reviewed within the context of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations. Moreover, within the framework of biological activity examination, these compounds showed favorable antibacterial performances compared to those of various species of bacteria, including both Gram-positive and Gram-negative strains.

View Article and Find Full Text PDF

Sesquipedalian mud and burnt bricks (second to third century AD) were excavated from the Roman city of Romula located in the Lower Danube Region (Olt county, Romania). Along with local soils, bricks are investigated by petrographic analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), electron microscopy (SEM/EDX), X-ray microtomography (XRT), thermal analysis (DTA-TG), Mӧssbauer spectroscopy, magnetometry, colorimetry, and mechanical properties assessment. The results correlate well with each other, being useful for conservation/restoration purposes and as reference data for other ceramic materials.

View Article and Find Full Text PDF

ZnO nanoparticle-based multifunctional coatings were prepared by a simple, time-saving microwave method. Arginine and ammonia were used as precipitation agents, and zinc acetate dehydrate was used as a zinc precursor. Under the optimized conditions, flower-like morphologies of ZnO aggregates were obtained.

View Article and Find Full Text PDF

A multidentate tetrazole molecule based on a TPE core, tetrakis[4-(1-tetrazol-5-yl)phenyl]ethylene (Httpe) with combined advantages of two functional groups, was synthesized by cycloaddition reaction of the corresponding organic benzonitrile derivative and azide salt. Coordination self-assembly of the in situ formed aggregation-induced emission polytetrazole luminogen with cadmium(II) ion produces an unprecedented tetrazolyl-TPE-based microporous cationic metal-organic framework (MOF) with an unusual (4,5,8T14)-connected net of {[Cd(Httpe)Cl]·(N)}, in which the Httpe serves as the first undeprotonated tetrazole ligand of octa-coordinating bridging mode. We investigate, for the first time, the utilization of the luminescent MOF containing a TPE core decorated with tetrazolyl terminals for explosive detection based on the change in fluorescence intensity, which shows high selectivity and efficiency in fluorescence quenching toward TNP detection in water solution.

View Article and Find Full Text PDF

A new sustainable and environmentally friendly adsorbent based on a β-ketoenol-pyrazole-thiophene receptor grafted onto a silica surface was developed and applied to the removal of heavy-metal ions (Pb(II), Cu(II), Zn(II), and Cd(II)) from aquatic medium. The new material was well characterized and confirms the success of covalent binding of the receptor on the silica surface. The effect of environmental parameters on adsorption including pH, contact time, temperature, and the initial concentration were investigated.

View Article and Find Full Text PDF

The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to DNA gyrase B.

View Article and Find Full Text PDF

Efficient materials capable of capturing toxic metals from water are widely needed. Herein, a new pyridylpyrazole-β-ketoenol receptor, X-ray diffraction analyzed, was covalently incorporated into the silica surface to produce solid and recyclable adsorbent particles. The new material, fully characterized, revealed extremely efficient removal of toxic metals from water, with a selectivity order of Pb(II) > Zn(II) > Cu(II) > Cd(II).

View Article and Find Full Text PDF

We revisit, in the key of structural chemistry, one of the most known and important drugs: the aspirin. Although apparently simple, the factors determining the molecular structure and supramolecular association in crystals are not trivial. We addressed the problem from experimental and theoretical sides, considering issues from X-ray measurements and results of first-principle reconstruction of molecule and lattices by ab initio calculations.

View Article and Find Full Text PDF

A new series of alkaline-earth-metal based coordination polymers were synthesized by using a pyrazine-2,5-dicarboxylic acid (2,5-H2pzdc) ligand under hydrothermal conditions. These compounds show a variety of structural topologies, reflecting the variable coordination geometries of the alkaline-earth ions as well as the key role of the metal precursor salts. Ca, Sr, and Ba give porous three-dimensional compounds, namely [Ca(2,5-pzdc)(H2O)2]·H2O (1), [Sr(2,5-pzdc)(H2O)4]·H2O (3), [Ba(2,5-pzdc)(H2O)4]·2H2O (4) and [Ba(2,5pzdc)(H2O)2] (5), that feature one-dimensional hydrophilic channels which are filled with water molecules.

View Article and Find Full Text PDF

The nontrivial aspects of electron structure in lanthanide complexes, considering ligand field (LF) and exchange coupling effects, have been investigated by means of density functional theory (DFT) calculations, taking as a prototypic case study a series of binuclear complexes [LCu(OCOMe)Ln(thd)], where L = N,N'-2,2-dimethyl-propylene-di(3-methoxy-salicylidene-iminato) and Ln = Tb, Lu, and Gd. Particular attention has been devoted to the Cu-Tb complex, which shows a quasi-degenerate nonrelativistic ground state. Challenging the limits of density functional theory (DFT), we devised a practical route to obtain different convergent solutions, permuting the starting guess orbitals in a manner resembling the run of the β electron formally originating from the f configuration of the Tb(III) over seven molecular orbitals (MOs) with predominant f-type character.

View Article and Find Full Text PDF

Controlled mixtures of novel Mg-based metal-organic frameworks (MOFs) were prepared, with H(+) or K(+) as counterions. A linear relation was found between synthesis pH and K/H ratio in the resultant mixture, establishing the tunability of the synthesis. Upon pyrolysis, these precursor mixtures yield nitrogen-doped, hierarchically porous carbons, which have good activity towards the oxygen reduction reaction (ORR) at pH 13.

View Article and Find Full Text PDF

A new class of thermotropic lanthanidomesogens has been designed and prepared. They are based on 4-pyridone ligands that possess mesogenic cyanobiphenyl groups attached to the 4-pyridone unit via a flexible long alkyl spacer and show a very high thermal stability (decomposition temperatures near 300 °C). Depending on the alkyl length spacer, these complexes exhibit a SmA phase with transition temperatures influenced by the number of mesogenic groups employed and the spacer length.

View Article and Find Full Text PDF

Ligand field density functional theory (LFDFT) is a methodology consisting of non-standard handling of DFT calculations and post-computation analysis, emulating the ligand field parameters in a non-empirical way. Recently, the procedure was extended for two-open-shell systems, with relevance for inter-shell transitions in lanthanides, of utmost importance in understanding the optical and magnetic properties of rare-earth materials. Here, we expand the model to the calculation of intensities of f → d transitions, enabling the simulation of spectral profiles.

View Article and Find Full Text PDF

We present a new coordination polymer, {[VO(pzdc)(H2O)2] H2O}n, built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both in non-coordinated and coordinated modes.

View Article and Find Full Text PDF

We present a new metal-organic framework (MOF) built from lanthanum and pyrazine-2,5-dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2]⋅2 H2O, is microporous, with 1D channels that easily accommodate water molecules.

View Article and Find Full Text PDF

Coumarin-based dyes have been successfully used in dye-sensitized solar cells, leading to photovoltaic conversion efficiencies of up to about 8%. Given the need to better understand the behavior of the dye adsorbed on the TiO₂ nanoparticle, we report results of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies of several coumarin-based dyes, as well as complex systems consisting of the dye bound to a TiO₂ cluster. We provide the electronic structure and simulated UV-Vis spectra of the dyes alone and adsorbed to the cluster and discuss the matching with the solar spectrum.

View Article and Find Full Text PDF

The reaction of [Fe3O(O2CPh)6(H2O)3](O2CPh) with lanthanide/rare earth nitrate salts in the presence of triethanolamine (H3tea) in acetonitrile/methanol solution yields a series of compounds with isostructural tetranuclear core motifs [Fe(III)2Ln(III)2(μ3-OH)2(teaH)2(O2CCPh)6]·3MeCN (Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), Yb (12), Y (13)). In all cases the core topology is a defect-dicubane planar or "butterfly" Fe2Ln2 motif. Compounds 1-13 were investigated using a combination of experimental techniques and theoretical studies.

View Article and Find Full Text PDF

Four heterodinuclear (H(2)O)(2)NiL-Ln(NO(3))(3) complexes (Ln = Tb, Dy, Er, Yb) with a double phenoxo bridge coming from the dideprotonated Schiff-base ligand are synthesized and characterized by crystal and powder X-ray diffraction studies. This series of compounds devoid of any chiral center, crystallizes in a noncentrosymmetric space group P2(1), as the previously described (H(2)O)(2)NiL-Gd(NO(3))(3) equivalent. All four complexes are ferromagnetically coupled.

View Article and Find Full Text PDF

In the following article the coordination properties of a recently reported curcuminoid 9Accm (9Accm = 1,7-(di-9-anthracene)-1,6-heptadiene-3,5-dione) with Zn(II) are reported. Preparation, crystal structure, and fluorescence spectroscopic studies of [Zn(II)(9Accm)(2)(py)] (1) are presented, as well as preliminary AFM and confocal microscopy studies on graphite surfaces. Complex 1 is the first crystallographically characterized Zn-curcuminoid in the literature; the intrinsic features of the complex are contrasted with the free ligand, 9Accm, and [Cu(II)(9Accm)(2)(py)] (2), a similar copper system, which has been recently described by us.

View Article and Find Full Text PDF

The synthesis and characterization of two Fe-Gd systems based on bpca(-) (Hbpca = bis(2-pyridilcarbonyl)amine) as bridging ligand is presented, taking the systems as a case study for structure-property correlations. Compound 1, [Fe(LS)(II)(μ-bpca)(2)Gd(NO(3))(2)(H(2)O)]NO(3)·2CH(3)NO(2), is a zigzag polymer, incorporating the diamagnetic low spin Fe(LS)(II) ion. The magnetism of 1 is entirely determined by the weak zero field splitting (ZFS) effect on the Gd(III) ion.

View Article and Find Full Text PDF

Magnetic properties of new d-f cyanido-bridged 1D assemblies [RE(pzam)(3)(H(2)O)W(CN)(8)]·H(2)O (RE(III) = Gd, 1, Tb, 2, Dy, 3; pzam = pyrazine-2-carboxamide) were studied by temperature- and field-dependent magnetization measurements. No evidence for 3D interchain magnetic ordering is found above 2 K. Multiconfiguration ab initio calculations and subsequent modeling afforded simulation of the weak zero-field splitting effect in 1 and discussion of magnetic anisotropy in the f units of compounds 2 and 3.

View Article and Find Full Text PDF

The six-coordinated mononuclear manganese(III) complex [Mn(5-Br-sal-N-1,5,8,12)]ClO(4) has been synthesized and isolated in crystalline form. Magnetic measurements and variable-temperature single-crystal X-ray crystallography corroborated with theoretical analysis provided firm evidence for the spin-crossover effects of this system. The monomeric complex cations are made by a hexadentate mixed-donor Schiff base ligand imposing a distorted octahedral geometry and subtle structural effects determining the manifestation of the variable spin properties of the manganese(III) centers.

View Article and Find Full Text PDF