Publications by authors named "Feras Hatib"

Background: The Hypotension Prediction Index (the index) software is a machine learning algorithm that detects physiologic changes that may lead to hypotension. The original validation used a case control (backward) analysis that has been suggested to be biased. This study therefore conducted a cohort (forward) analysis and compared this to the original validation technique.

View Article and Find Full Text PDF

Left ventricular mechanical dyssynchrony (LVMD) refers to the nonuniformity in mechanical contraction and relaxation timing in different ventricular segments. We aimed to determine the relationship between LVMD and LV performance, as assessed by ventriculo-arterial coupling (VAC), LV mechanical efficiency (LV ), left ventricular ejection fraction (LVEF), and diastolic function during sequential experimental changes in loading and contractile conditions. Thirteen Yorkshire pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/reinfusion and fluid bolus), and contractility (esmolol/dobutamine).

View Article and Find Full Text PDF

To investigate if the Hypotension Prediction Index was an early indicator of haemodynamic instability in a negative inotropy porcine model, and to assess the correlation of commonly measured indicators of left ventricular systolic function. Eight anaesthetised pigs were volume resuscitated and then underwent an incremental infusion of esmolol hydrochloride (0-3000 mg/hr), following which it was then reduced in a stepwise manner. Full haemodynamic measurements were taken at each stage and measurements of left ventricular systolic function including left ventricular stroke work index, ejection fraction and peripheral dP/dT were obtained.

View Article and Find Full Text PDF

Dynamic arterial elastance (Ea), the ratio between arterial pulse pressure and stroke volume changes during respiration, has been postulated as an index of the coupling between the left ventricle (LV) and the arterial system. We aimed to confirm this hypothesis using the gold-standard for defining LV contractility, afterload, and evaluating ventricular-arterial (VA) coupling and LV efficiency during different loading and contractile experimental conditions. Twelve Yorkshire healthy female pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/fluid bolus), and contractility (esmolol/dobutamine).

View Article and Find Full Text PDF

An algorithm derived from machine learning uses the arterial waveform to predict intraoperative hypotension some minutes before episodes, possibly giving clinician's time to intervene and prevent hypotension. Whether the Hypotension Prediction Index works well with noninvasive arterial pressure waveforms remains unknown. We therefore evaluated sensitivity, specificity, and positive predictive value of the Index based on non-invasive arterial waveform estimates.

View Article and Find Full Text PDF

Background: The aim of this study was to quantify the impact of different cardiovascular factors on left ventricular ejection fraction (LVEF) and test a novel LVEF calculation considering these factors.

Results: 10 pigs were studied. The experimental protocol consisted of sequentially changing afterload, preload and contractility.

View Article and Find Full Text PDF

Background: Intraoperative hypotension is associated with worse perioperative outcomes for patients undergoing major noncardiac surgery. The Hypotension Prediction Index is a unitless number that is derived from an arterial pressure waveform trace, and as the number increases, the risk of hypotension occurring in the near future increases. We investigated the diagnostic ability of the Hypotension Prediction Index in predicting impending intraoperative hypotension in comparison to other commonly collected perioperative hemodynamic variables.

View Article and Find Full Text PDF

To compare the effective arterial elastance (Ea) obtained from the arterial pressure with Ea calculated from left-ventricular (LV) pressure-volume analysis. Experimental study. LV pressure-volume data was obtained with a conductance catheter and arterial pressures were measured via a fluid-filled catheter placed in the proximal aorta, femoral and radial arteries.

View Article and Find Full Text PDF

Background: Maximal left ventricular (LV) pressure rise (LV dP/dt), a classical marker of LV systolic function, requires LV catheterization, thus surrogate arterial pressure waveform measures have been proposed. We compared LV and arterial (femoral and radial) dP/dt to the slope of the LV end-systolic pressure-volume relationship (Ees), a load-independent measure of LV contractility, to determine the interactions between dP/dt and Ees as loading and LV contractility varied.

Methods: We measured LV pressure-volume data using a conductance catheter and femoral and radial arterial pressures using a fluid-filled catheter in 10 anesthetized pigs.

View Article and Find Full Text PDF

What We Already Know About This Topic: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: With appropriate algorithms, computers can learn to detect patterns and associations in large data sets. The authors' goal was to apply machine learning to arterial pressure waveforms and create an algorithm to predict hypotension. The algorithm detects early alteration in waveforms that can herald the weakening of cardiovascular compensatory mechanisms affecting preload, afterload, and contractility.

View Article and Find Full Text PDF

Introduction: phenylephrine is used daily during anesthesia for treating hypotension. However, the effects of phenylephrine on cardiac output (CO) are not clear. We hypothesized that the impact of phenylephrine on cardiac output is related to preload dependency.

View Article and Find Full Text PDF

Objective: To investigate the ability of a new stroke volume variation algorithm to predict fluid responsiveness during general anesthesia and mechanical ventilation in animals with multiple extrasystoles.

Design: Prospective laboratory animal experiment.

Setting: Investigational laboratory.

View Article and Find Full Text PDF

Cardiac output measurement from arterial pressure waveforms presumes a defined relationship between the arterial pulse pressure (PP), vascular compliance (C), and resistance (R). Cardiac output estimates degrade if these assumptions are incorrect. We hypothesized that sepsis would differentially alter central and peripheral vasomotor tone, decoupling the usual pressure wave propagation from central to peripheral sites.

View Article and Find Full Text PDF

Work on applying physical and physiological principles for determining cardiac output by analysis of pressure measurements has been pursued for decades. Reference measurements for this kind of cardiac output analysis rely on the pulmonary artery catheter (PAC), considered the clinical gold standard for cardiac output monitoring. Recent advances in signal processing, as well as applied information on the relationships that enable arterial pulse pressure to be used to determine stroke volume, have led to the development of a novel system that can continuously measure cardiac output from an arterial pressure waveform that does not require an external calibration reference method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: