Electrospinning's production method has been streamlined and perfected because to advancements in technology and increased demand. While working with electrospun fibers, it is crucial to ensure that they are collected in the correct orientation. Electrospun fibers can be either aligned or random.
View Article and Find Full Text PDFTechnol Health Care
November 2022
Background: Drawing blood from the fingertips for glucose testing is painful and likely to cause tissue damage over time. Earlobes are an alternative site for glucose measurement.
Objective: This work aims to validate the earlobe as an alternate test site for blood glucose testing by demonstrating valid and reliable statistically significant differences between the earlobes and standard reference sites.
Electrospinning enables simple and cost-effective production of polymer nanofibers from different polymer materials. Drug delivery systems are capable of achieving maximum drug treatment benefits by significantly reducing adverse complications. Electrospun nanofibers have recently attracted considerable attention owing to their distinctive properties, including flexibility and biocompatibility.
View Article and Find Full Text PDFAppl Bionics Biomech
February 2022
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering.
View Article and Find Full Text PDFPurpose: The daily life management of patients with Alzheimer's disease (AD) constitutes a significant and rapidly expanding health-care responsibility. In this study, an innovative prototype of a wireless-sensing smart wearable medical device (SWMD) is proposed as a multi-functions solution for Alzheimer patients. The SWMD is aimed to assemble three main biomedical engineering advances: 1) use of a Wi-Fi microcontroller, 2) simultaneous monitoring of a set of vital biomarkers, and 3) cautions of fall down conditions, in addition to GPS location indicator.
View Article and Find Full Text PDFImplantable devices have successfully proven their reliability and efficiency in the medical field due to their immense support in a variety of aspects concerning the monitoring of patients and treatment in many ways. Moreover, they assist the medical field in disease diagnosis and prevention. However, the devices' power sources rely on batteries, and with this reliance, comes certain complications.
View Article and Find Full Text PDF