The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/NiMo alloy (NiFe-LDH/NiMo) heterojunction electrocatalyst, featuring the NiMo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability.
View Article and Find Full Text PDFAlloying has significantly upgraded the oxygen reduction reaction (ORR) of Pd-based catalysts through regulating the thermodynamics of oxygenated intermediates. However, the unsatisfactory activation ability of Pd-based alloys toward O molecules limits further improvement of ORR kinetics. Herein, the precise synthesis of nanosheet assemblies of spin-polarized PdCu-FeO in-plane heterostructures for drastically activating O molecules and boosting ORR kinetics is reported.
View Article and Find Full Text PDFRationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a "holy grail" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H evolution.
View Article and Find Full Text PDFUltrathin nanosheet catalysts deliver great potential in catalyzing the oxygen reduction reaction (ORR), but encounter the ceiling of the surface atomic utilizations, thus presenting a challenge associated with further boosting catalytic activity. Herein, a kind of PdPtCu ultrathin nanorings with increased numbers of electrocatalytically active sites is reported, with the purpose of breaking the activity ceiling of conventional catalysts. The as-made PdPtCu nanorings possess abundant high-index facets at the edge of both the exterior and interior surfaces.
View Article and Find Full Text PDFNanoarray catalysts supported on substrates provide an opportunity for industrially promising overall water splitting at large current densities. However, most of the present electrocatalysts show high overpotentials at a large current density, inducing a low efficiency for industrial water electrolysis. Herein, using the classic NiCoP nanorod arrays as the basic catalyst model, we presented a trace W and Mo co-doped strategy to boost the overall water splitting electrocatalysis at an industrial current density.
View Article and Find Full Text PDF