Publications by authors named "Fenqiang Zhao"

Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions.

View Article and Find Full Text PDF

Brain extraction and image quality assessment are two fundamental steps in fetal brain magnetic resonance imaging (MRI) 3D reconstruction and quantification. However, the randomness of fetal position and orientation, the variability of fetal brain morphology, maternal organs around the fetus, and the scarcity of data samples, all add excessive noise and impose a great challenge to automated brain extraction and quality assessment of fetal MRI slices. Conventionally, brain extraction and quality assessment are typically performed independently.

View Article and Find Full Text PDF

Fetal Magnetic Resonance Imaging (MRI) is challenged by fetal movements and maternal breathing. Although fast MRI sequences allow artifact free acquisition of individual 2D slices, motion frequently occurs in the acquisition of spatially adjacent slices. Motion correction for each slice is thus critical for the reconstruction of 3D fetal brain MRI.

View Article and Find Full Text PDF

Spherical mapping of cortical surface meshes provides a more convenient and accurate space for cortical surface registration and analysis and thus has been widely adopted in neuroimaging field. Conventional approaches typically first inflate and project the original cortical surface mesh onto a sphere to generate an initial spherical mesh which contains large distortions. Then they iteratively reshape the spherical mesh to minimize the metric (distance), area or angle distortions.

View Article and Find Full Text PDF

In neuroimaging analysis, accurate parcellation of the extremely folded cerebellar cortex is of immense importance for both structural and functional studies. To this end, we aim to develop a novel end-to-end deep learning-based method for automatic parcellation of the cerebellar cortical surface, which has an intrinsic spherical topology. Motivated by the success of Transformer, we employ Spherical Transformer to leverage its ability to model long-range dependency.

View Article and Find Full Text PDF

Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, coarse-to-fine deep framework to precisely segment the infant subcortical structures.

View Article and Find Full Text PDF

Spatiotemporal (4D) cortical surface atlas during infancy plays an important role for surface-based visualization, normalization and analysis of the dynamic early brain development. Conventional atlas construction methods typically rely on classical group-wise registration on sub-populations and ignore longitudinal constraints, thus having main issues: 1) constructing templates at discrete time points; 2) resulting in longitudinal inconsistency among different age's atlases; and 3) taking extremely long runtime. To address these issues, in this paper, we propose a fast incorporating to enforce the within-subject temporal correspondence in the atlas space.

View Article and Find Full Text PDF

Motivated by the recent great success of attention modeling in computer vision, it is highly desired to extend the Transformer architecture from the conventional Euclidean space to non-Euclidean spaces. Given the intrinsic spherical topology of brain cortical surfaces in neuroimaging, in this study, we propose a novel Spherical Transformer, an effective general-purpose backbone using the self-attention mechanism for analysis of cortical surface data represented by triangular meshes. By mapping the cortical surface onto a sphere and splitting it uniformly into overlapping spherical surface patches, we encode the long-range dependency within each patch by the self-attention operation and formulate the cross-patch feature transmission via overlapping regions.

View Article and Find Full Text PDF

Cortical surface registration and parcellation are two essential steps in neuroimaging analysis. Conventionally, they are performed independently as two tasks, ignoring the inherent connections of these two closely-related tasks. Essentially, both tasks rely on meaningful cortical feature representations, so they can be jointly optimized by learning shared useful cortical features.

View Article and Find Full Text PDF

Brain cortical surfaces, which have an intrinsic spherical topology, are typically represented by triangular meshes and mapped onto a spherical manifold in neuroimaging analysis. Inspired by the strong capability of feature learning in Convolutional Neural Networks (CNNs), spherical CNNs have been developed accordingly and achieved many successes in cortical surface analysis. Motivated by the recent success of the transformer, in this paper, for the first of time, we extend the transformer into the spherical space and propose the spherical transformer, which can better learn contextual and structural features than spherical CNNs.

View Article and Find Full Text PDF

Spatiotemporal (four-dimensional) infant-dedicated brain atlases are essential for neuroimaging analysis of early dynamic brain development. However, due to the substantial technical challenges in the acquisition and processing of infant brain MR images, 4D atlases densely covering the dynamic brain development during infancy are still scarce. Few existing ones generally have fuzzy tissue contrast and low spatiotemporal resolution, leading to degraded accuracy of atlas-based normalization and subsequent analyses.

View Article and Find Full Text PDF

Brain atlases are of fundamental importance for analyzing the dynamic neurodevelopment in fetal brain studies. Since the brain size, shape, and anatomical structures change rapidly during the prenatal period, it is essential to construct a spatiotemporal (4D) atlas equipped with tissue probability maps, which can preserve sharper early brain folding patterns for accurately characterizing dynamic changes in fetal brains and provide tissue prior informations for related tasks, e.g.

View Article and Find Full Text PDF

Longitudinal infant dedicated cerebellum atlases play a fundamental role in characterizing and understanding the dynamic cerebellum development during infancy. However, due to the limited spatial resolution, low tissue contrast, tiny folding structures, and rapid growth of the cerebellum during this stage, it is challenging to build such atlases while preserving clear folding details. Furthermore, the existing atlas construction methods typically independently build discrete atlases based on samples for each age group without considering the within-subject temporal consistency, which is critical for large-scale longitudinal studies.

View Article and Find Full Text PDF

Longitudinal brain imaging atlases with densely sampled time-points and ancillary anatomical information are of fundamental importance in studying early developmental characteristics of human and non-human primate brains during infancy, which feature extremely dynamic imaging appearance, brain shape and size. However, for non-human primates, which are highly valuable animal models for understanding human brains, the existing brain atlases are mainly developed based on adults or adolescents, denoting a notable lack of temporally densely-sampled atlases covering the dynamic early brain development. To fill this critical gap, in this paper, we construct a comprehensive set of longitudinal brain atlases and associated tissue probability maps (gray matter, white matter, and cerebrospinal fluid) with totally 12 time-points from birth to 4 years of age (i.

View Article and Find Full Text PDF

Cortical surface registration is an essential step and prerequisite for surface-based neuroimaging analysis. It aligns cortical surfaces across individuals and time points to establish cross-sectional and longitudinal cortical correspondences to facilitate neuroimaging studies. Though achieving good performance, available methods are either time consuming or not flexible to extend to multiple or high dimensional features.

View Article and Find Full Text PDF

Fetal Magnetic Resonance Imaging (MRI) is challenged by the fetal movements and maternal breathing. Although fast MRI sequences allow artifact free acquisition of individual 2D slices, motion commonly occurs in between slices acquisitions. Motion correction for each slice is thus very important for reconstruction of 3D fetal brain MRI, but is highly operator-dependent and time-consuming.

View Article and Find Full Text PDF

Current spherical surface registration methods achieve good performance on alignment and spatial normalization of cortical surfaces across individuals in neuroimaging analysis. However, they are computationally intensive, since they have to optimize an objective function independently for each pair of surfaces. In this paper, we present a fast learning-based algorithm that makes use of the recent development in spherical Convolutional Neural Networks (CNNs) for spherical cortical surface registration.

View Article and Find Full Text PDF

Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have an inherent spherical topology in a manifold space, e.g.

View Article and Find Full Text PDF

As non-human primates, macaques have a close phylogenetic relationship to human beings and have been proven to be a valuable and widely used animal model in human neuroscience research. Accurate skull stripping (aka. brain extraction) of brain magnetic resonance imaging (MRI) is a crucial prerequisite in neuroimaging analysis of macaques.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) surpasses the optical diffraction limit and offers a two-fold enhancement in resolution over diffraction limited microscopy. However, it requires both intense illumination and multiple acquisitions to produce a single high-resolution image. Using deep learning to augment SIM, we obtain a five-fold reduction in the number of raw images required for super-resolution SIM, and generate images under extreme low light conditions (at least 100× fewer photons).

View Article and Find Full Text PDF

Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a manifold space, e.g.

View Article and Find Full Text PDF

Increasing multi-site infant neuroimaging datasets are facilitating the research on understanding early brain development with larger sample size and bigger statistical power. However, a joint analysis of cortical properties (e.g.

View Article and Find Full Text PDF

Automatic parcellation of cortical surfaces into anatomically meaningful regions of interest (ROIs) is of great importance in brain analysis. Due to the complex shape of the convoluted cerebral cortex, conventional methods generally require three steps to obtain the parcellations. , the original cortical surface is iteratively inflated and mapped onto a spherical surface with minimal metric distortion, for providing a simpler shape for analysis.

View Article and Find Full Text PDF

In human brain MRI studies, it is of great importance to accurately parcellate cortical surfaces into anatomically and functionally meaningful regions. In this paper, we propose a novel end-to-end deep learning method by formulating surface parcellation as a semantic segmentation task on the sphere. To extend the convolutional neural networks (CNNs) to the spherical space, corresponding operations of surface convolution, pooling and upsampling are first developed to deal with data representation on spherical surface meshes, and then spherical CNNs are constructed accordingly.

View Article and Find Full Text PDF

Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support.

View Article and Find Full Text PDF