Publications by authors named "Fenno J"

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Aim: Ultrasonography (US) has shown accuracy in imaging healthy periodontium. This study aims to evaluate the feasibility and accuracy of US for estimating dimensions of inflamed periodontium induced by ligature and bacteria.

Methods: Periodontal tissues of maxillary as well as mandibular premolars and molars in six female mini pigs were treated with ligature and three strains of bacteria for 4-10 weeks.

View Article and Find Full Text PDF

The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1).

View Article and Find Full Text PDF
Article Synopsis
  • This study developed silk fibroin methacrylated (SilkMA) scaffolds infused with varying concentrations of metronidazole (MET) to treat infections in dental root-end surgeries while promoting bone healing.
  • The results showed that higher MET concentrations (30%) resulted in improved mechanical properties, reduced swelling, and notable antibacterial efficacy against specific pathogens, as well as a decrease in pro-inflammatory cytokines during testing.
  • Overall, the research supports the potential of these MET-laden SilkMA scaffolds as effective treatments for managing periapical lesions, enhancing both structural support and infection control.
View Article and Find Full Text PDF

Unlabelled: Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of periodontal tissue homeostasis, leading to breakdown of the tissue and bone supporting the teeth in periodontal disease. Of the greater than sixty oral species and phylotypes, is one of the few that can be grown in culture and the only one in which genetic manipulation has been shown to be practicable. is thus a model organism for studying spirochete metabolic processes, interactions with other microbes and host cell and tissue responses relevant to oral diseases as well as venereal and nonvenereal treponematoses.

View Article and Find Full Text PDF

Introduction: Recognizing the necessity of novel disinfection strategies for improved bacterial control to ultimately favor tissue regeneration, this study developed and characterized antibiotics-laden silk fibroin methacrylated (SilkMA) scaffolds for regenerative endodontics.

Methods: SilkMA-based solutions (10% w/v) containing Clindamycin (CLI) or Tinidazole (TIN) (0 - control; 5, 10, or 15% w/w) or the combination of both drugs (BiMix CLI/TIN 10%) were electrospun and photocrosslinked. Morphology and composition were assessed using scanning electron microscopy and Fourier-transform infrared spectroscopy.

View Article and Find Full Text PDF

Oral Veillonella species are among the early colonizers of the human oral cavity. We constructed a small, single-selectable-marker shuttle plasmid, examined its ability to be transformed into diverse oral Veillonella strains, and assessed its potential use for expressing a gene encoding an oxygen-independent fluorescent protein, thus generating a fluorescent Veillonella parvula strain. Because tetracycline resistance is common in Veillonella, we replaced genes encoding ampicillin- and tetracycline-resistance in a previously described shuttle plasmid (pBSJL2) with a chloramphenicol acetyltransferase gene.

View Article and Find Full Text PDF

Periodontal disease is characterized by the destruction of the hard and soft tissues comprising the periodontium. This destruction translates to a degradation of the extracellular matrices (ECM), mediated by bacterial proteases, host-derived matrix metalloproteinases (MMPs), and other proteases released by host tissues and immune cells. Bacterial pathogens interact with host tissue, triggering adverse cellular functions, including a heightened immune response, tissue destruction, and tissue migration.

View Article and Find Full Text PDF

The cariogenicity of Streptococcus mutans relates to its ability to form biofilms on dental surfaces. The aim of this work was to develop a flowcell system compatible with time-lapse confocal microscopy to compare the adhesion and accumulation of S. mutans cells on surfaces in unsupplemented media against media containing sucrose or sucralose (a non-metabolized sweetener) over a short period of time.

View Article and Find Full Text PDF

Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation.

View Article and Find Full Text PDF

Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of tissue homeostatic processes that leads to breakdown of the tissue and bone supporting the teeth in periodontal disease. Additionally, our group has recently demonstrated that Treponema are among the dominant microbial genera detected intracellularly in tumor specimens from patients with oral squamous cell carcinoma. While over 60 species and phylotypes of oral Treponema have been detected, T.

View Article and Find Full Text PDF

Background: Because little is known about the impact of implant surface modifications on the peri-implant microbiome, we aimed to examine peri-implant communities in various surface types in order to better understand the impact of these surfaces on the development of peri-implantitis (PI).

Methods: One hundred and six systemically healthy individuals with anodized (AN), hydroxyapatite-coated (HA), or sandblasted acid-etched (SLA) implants that were >6 months in function were recruited and categorized into health (H) or PI. Peri-implant biofilm was analyzed using 16S rRNA gene sequencing and compared between health/disease and HA/SLA/AN using community-level and taxa-level metrics.

View Article and Find Full Text PDF

Currently employed approaches and materials used for vital pulp therapies (VPTs) and regenerative endodontic procedures (REPs) lack the efficacy to predictably achieve successful outcomes due to their inability to achieve adequate disinfection and/or lack of desired immune modulatory effects. Natural polymers and medicinal herbs are biocompatible, biodegradable, and present several therapeutic benefits and immune-modulatory properties; thus, standing out as a clinically viable approach capable of establishing a conducive environment devoid of bacteria and inflammation to support continued root development, dentinal bridge formation, and dental pulp tissue regeneration. However, the low stability and poor mechanical properties of the natural compounds have limited their application as potential biomaterials for endodontic procedures.

View Article and Find Full Text PDF
Article Synopsis
  • Regenerative endodontics is shifting how dental pulp therapy is approached for young permanent teeth with necrosis, but challenges remain in disinfecting root canals while preserving stem cells.
  • A new hydrogel combining antibiotic-eluting microparticles with gelatin methacryloyl (GelMA) was developed to enhance antimicrobial effects and support cell viability.
  • The engineered hydrogels showed effective bacterial growth inhibition and improved blood vessel formation, indicating their potential as a multi-therapeutic solution for regenerative dental treatments.
View Article and Find Full Text PDF

Background: Droplets and aerosols produced during dental procedures are a risk factor for microbial and viral transmission. Unlike sodium hypochlorite, hypochlorous acid (HOCl) is nontoxic to tissues but still exhibits broad microbicidal effect. HOCl solution may be applicable as a supplement to water and/or mouthwash.

View Article and Find Full Text PDF

This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against and were also studied.

View Article and Find Full Text PDF

Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T.

View Article and Find Full Text PDF

Objectives: This work sought to formulate photocrosslinkable chlorhexidine (CHX)-laden methacrylated gelatin (CHX/GelMA) hydrogels with broad spectrum of action against endodontic pathogens as a clinically viable cell-friendly disinfection therapy prior to regenerative endodontics procedures.

Methods: CHX/GelMA hydrogel formulations were successfully synthesized using CHX concentrations between 0.12 % and 5 % w/v.

View Article and Find Full Text PDF

This investigation aimed to synthesize poly(D,L-lactide) (PLA)-based fibrous scaffolds containing natural essential oils (i.e., linalool and citral) and determine their antimicrobial properties and cytocompatibility as a clinically viable cell-friendly disinfection strategy for regenerative endodontics.

View Article and Find Full Text PDF

The impact of oral microbial dysbiosis on Alzheimer's disease (AD) remains controversial. Building off recent studies reporting that various microbes might directly seed or promote amyloid β (Aβ) deposition, we evaluated the effects of periodontal bacteria ( and supragingival commensal () oral bacterial infection in the APP-transgenic CRND8 (Tg) mice model of AD. We tracked bacterial colonization and dissemination, and monitored effects on gliosis and amyloid deposition.

View Article and Find Full Text PDF

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles.

View Article and Find Full Text PDF

Background: This study assesses the association between peri-implantitis and cardiovascular diseases (CVD).

Methods: One hundred and twenty-eight patients with dental implants were recruited to evaluate the prevalence of peri-implantitis in patients with or without CVD (CVD group, n = 82, control group, n = 46, respectively). Diagnosis of peri-implantitis followed the 2017 World Workshop guidelines and the severity was defined as mild, moderate, and severe form when the radiographic bone loss (RBL) was <2, 2 to 4, and >4 mm.

View Article and Find Full Text PDF

Periodontitis compromises the integrity and function of tooth-supporting structures. Although therapeutic approaches have been offered, predictable regeneration of periodontal tissues remains intangible, particularly in anatomically complex defects. In this work, personalized and defect-specific antibiotic-laden polymeric scaffolds containing metronidazole (MET), tetracycline (TCH), or their combination (MET/TCH) were created via electrospinning.

View Article and Find Full Text PDF

Periodontitis has been associated with many systemic diseases and conditions, including metabolic syndrome. Metabolic syndrome is a cluster of conditions that occur concomitantly and together they increase the risk of cardiovascular disease and double the risk of type 2 diabetes. In this review, we focus on the association between metabolic syndrome and periodontitis; however, we also include information on diabetes mellitus and cardiovascular disease, since these two conditions are significantly intertwined with metabolic syndrome.

View Article and Find Full Text PDF

Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions.

View Article and Find Full Text PDF