Publications by authors named "Fennigje Purves-Smith"

Key Points: Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore.

View Article and Find Full Text PDF

Anticancer treatments for childhood acute lymphoblastic leukaemia (ALL) are highly effective but are now implicated in causing impaired muscle function in long-term survivors. However, no comprehensive assessment of skeletal muscle mitochondrial functions in long-term survivors has been performed and the presence of persistent chemotherapy-induced skeletal muscle mitochondrial dysfunction remains a strong possibility. Non-tumour-bearing mice were treated with two drugs that have been used frequently in ALL treatment (doxorubicin and dexamethasone) for up to 4 cycles at 3-week intervals and euthanized 3 months after the 4th cycle.

View Article and Find Full Text PDF

It is accepted widely that fast-twitch muscle fibers are preferentially impacted in aging muscle, yet we hypothesize that this is not valid when aging muscle atrophy becomes severe. In this review, we summarize the evidence of fiber type-specific effect in aging muscle and the potential confounding roles of fibers coexpressing multiple myosin heavy-chain isoforms and their histochemical identification.

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.

View Article and Find Full Text PDF

Although slow myofibers are considered less susceptible to atrophy with aging, slow fiber atrophy may have been underestimated previously. First, the marked atrophy of the aging rat soleus (Sol) muscle cannot be explained by the atrophy of only the fast fibers, due to their low abundance. Second, the increase in small fibers co-expressing both fast and slow myosin heavy chains (MHC) in the aging rat Sol is proportional to a decline in pure MHC slow fibers (Snow et al.

View Article and Find Full Text PDF

Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav₁.₅, in young adult (YA) and senescent (SEN) rats.

View Article and Find Full Text PDF

The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined.

View Article and Find Full Text PDF