Publications by authors named "Fenhong Song"

Article Synopsis
  • * Measured the densities of these DES + water systems using a U-tube oscillation method over a range of temperatures (293.15 - 363.15 K).
  • * Found that DES + water systems had greater CO solubility than the standard 30% monoethanolamine solution, highlighting their potential for effective CO capture.
View Article and Find Full Text PDF
Article Synopsis
  • Tavorite LiFeSOF is a potential alternative to LiFePO due to high Li-ion conductivity but has issues with cycle stability and electronic conductivity.
  • A study introduces magnesium-substituted LiMgFeSOF using a solvothermal method, where Mg replaces Fe(2) sites, potentially enhancing the material's properties.
  • The results indicate that Mg substitution reduces the bandgap and diffusion energy barrier, leading to improved electronic conductivity, cycle stability, and overall performance of LiFeSOF cathode materials for lithium-ion batteries.
View Article and Find Full Text PDF

Water must be separated from water-in-oil (W/O) emulsion because of the corrosion it brings to the relative equipment in the process of transportation and storage. It is an effective method to apply external electric field to achieve high performance of separating small, dispersed water droplets from W/O emulsion; however, the coalescing micromechanism of such small salty droplets under AC electric field is unclear. In this paper, molecular dynamics simulation was adopted to investigate the coalescence and separation process of two NaCl-aqueous droplets under AC electric field and discuss the effect of AC electric field frequency, as well as the time required for contacting, the critical electric field strength, the dynamic coalescence process and the stability of the final merged droplet.

View Article and Find Full Text PDF

Besides the dominant NaCl, natural seawater/river water contains trace multivalent ions, which can provide effective screening of surface charges. Here, in both negatively and positively charged nanopores, influences from divalent ions as counterions and co-ions have been investigated with respect to the performance of osmotic energy conversion (OEC) under natural salt gradients. As counterions, trace Ca ions can suppress the electric power and conversion efficiency significantly.

View Article and Find Full Text PDF

It is well known that surface tension is dependent on temperature, and thus a nonuniform temperature may cause thermocapillary flow which is referred to as the Marangoni effect. For a thin liquid-air film confined between a flat hot plate and a topographical cold template, it undergoes deformation due to thermocapillary flow. This phenomenon is termed as thermocapillary patterning, and has been used to fabricate micro- and nanostructure in polymer films.

View Article and Find Full Text PDF

High-performance osmotic energy conversion requires both large ionic throughput and high ionic selectivity, which can be significantly promoted by exterior surface charges simultaneously, especially for short nanopores. Here, we investigate the enhancement of ionic diffusion by charged exterior surfaces under various conditions and explore corresponding effective charged areas. From simulations, ionic diffusion is promoted more significantly by exterior surface charges through nanopores with a shorter length, wider diameter, and larger surface charge density or under higher salt gradients.

View Article and Find Full Text PDF

Due to their splendid advantages, deep eutectic solvents have attracted high attention and are considered as analogues of ionic liquids. Deep eutectic solvents (DESs) are homogeneous mixtures formed by two or three green and cheap components through hydrogen bond, which is divided into hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD). Recently, Betaine has been widely used as a hydrogen bond acceptor.

View Article and Find Full Text PDF

Electric field is an effective method to manipulate droplets in micro/nano-scale, and various physical phenomena have been found due to the interaction of electric field and fluid flow. In this study, we developed a molecular dynamic model to investigate the deforming behavior of a nano-droplet in a uniform electric field. The nano-droplet was initially confined between two plates and then wetted on the lower plate (i.

View Article and Find Full Text PDF

Compared with traditional aqueous solutions, ionic liquids have important application prospects in the field of wetting and electrowetting due to the advantages of high electric conductivity, long liquid range, and low volatility. In this paper, molecular dynamics method was employed to investigate the wetting and electrowetting behaviors of the nanodroplet of ionic liquid on a solid substrate, as well as the distribution of ionic groups. The ionic liquid is 1-butyl-3-methyl tetra-fluoroborate and coarse grained to simplify the molecular simulation model.

View Article and Find Full Text PDF

Molecular dynamic simulations were adopted to study the wetting properties of nanoscale droplets on rough silicon solid substrate subject to perpendicular electric fields. The effect of roughness factor and electric field strength on the static and dynamic wetting behaviors of a nano-droplet on a solid surface was investigated at the molecular level. Results show that the static contact angle tends to decrease slightly and show small difference with the increase of roughness factor, while it shows an obvious increase for the ramp-shaped surface because the appearing bottom space reduces the wettability of solid surface.

View Article and Find Full Text PDF

Molecular dynamics simulations were applied to study the wetting properties of nanoscale droplets on a polar silica solid substrate subjected to constant and alternative electric fields with various field frequencies. Results show that the external applied electric fields have significant effects on the wetting of the nanoscale droplet on a polar solid substrate. The droplet spreads asymmetrically under the effect of the external applied field, and this asymmetry culminates to the maximum when the electric field equals to 0.

View Article and Find Full Text PDF

Electric field-induced micro-/nanopatterns in thin polymer films, sometimes referred as electrohydrodynamic patterning, is a promising technique to fabricate micro-/nanostructures. Extensive attention has been attracted because of its advantages in microcontact (easy demolding) and low cost. Although considerable work has been done on this technique, including both experimental and theoretical ones, there still appears a requirement for understanding the mechanism of electrohydrodynamic patterning.

View Article and Find Full Text PDF

By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT.

View Article and Find Full Text PDF

A method has been developed to quantify the nitrofuran metabolites 3-amino-5-morphorinomethyl-1,3-oxazolidinone, 3-amino-oxazolidinone, 1-aminohydantoin, and semicarbazide, as well as chloramphenicol in shrimp with a single extraction procedure followed by LC-MS/MS analysis. Dynamic selected reaction monitoring with positive and negative ionization mode switching was used. The method LODs were 0.

View Article and Find Full Text PDF

A new method has been developed using flow injection tandem mass spectrometry to semi-quantitatively screen for weight loss drugs, including sibutramine, N-desmethylsibutramine, N-didesmethylsibutramine, and phenolphthalein in dietary supplements. Positive identification of these drugs in samples was further confirmed and quantified by liquid chromatography tandem mass spectrometry. The degradation products of sibutramine were observed and identified by LC-MS/MS which include N-desmethylsibutramine, N-didesmethylsibutramine, N-formyldesmethylsibutramine, and N-formyldidesmethylsibutramine.

View Article and Find Full Text PDF

A flow injection tandem mass spectrometry method (FI-MS/MS) has been developed to detect enzyme phosphodiesterase type 5 inhibitors, including tadalafil, sildenafil, and vardenafil. Multiple reaction monitoring (MRM) was used to detect the drugs and product ion ratios were used for identification. FI-MS/MS was used for semi-quantification and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for further confirmation and quantification.

View Article and Find Full Text PDF

Drug adulteration in dietary supplement materials is a world-wide problem and poses a regulatory challenge. Red yeast rice is a product used by consumers to lower blood levels of cholesterol. While most current methods to analyze red yeast rice are based on HPLC separation with a photo-diode array detector and/or a mass spectrometry detector, which takes 20-40min analysis time per sample, we developed a method to do fast screening of the active compound lovastatin by direct infusion into a mass spectrometer.

View Article and Find Full Text PDF

Interferences, or "cross-talk", have been found for the liquid chromatorgraphy mass spectrometry (LC-MS) determination of chlorophenoxy acid (CPA) herbicides. The time-scheduled multiple reaction monitoring (MRM) of m/z 161.0→125.

View Article and Find Full Text PDF

The bark of maritime pine (Pinus pinaster Aiton) has been widely used as a remedy for various degenerative diseases. A standard high-performance liquid chromatographic (HPLC) procedure for Pycnogenol analysis is a method specified in the United States Pharmacopeia (USP) monograph, which requires measurement of peak areas and identification of four components of the extract: caffeic acid, catechin, ferulic acid, and taxifolin. In this study, a fingerprint analysis using an HPLC method based on the USP monograph has been developed to provide additional qualitative information for the analysis of Pycnogenol-containing dietary supplements (PDS).

View Article and Find Full Text PDF

A sample preparation method has been developed for detection of noncovalent protein-protein complexes by MALDI in this work. An aqueous solution of the matrix at pH 7 allows the reproducible detection of a protein dimer, a protein tetramer, and a heterodimer. The signals are stable under long irradiation and can be detected at wide ranges of concentrations and with different laser intensities.

View Article and Find Full Text PDF

Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur.

View Article and Find Full Text PDF

The DNA repair enzyme uracil DNA glycosylase (UDG) utilizes base flipping to recognize and remove unwanted uracil bases from the genome but does not react with its structural congener, thymine, which differs by a single methyl group. Two factors that determine whether an enzyme flips a base from the duplex are its shape and hydrogen bonding properties. To probe the role of these factors in uracil recognition by UDG, we have synthesized a DNA duplex that contains a single difluorophenyl (F) nucleotide analogue that is an excellent isostere of uracil but possesses no hydrogen bond donor or acceptor groups.

View Article and Find Full Text PDF

Uracil DNA glycosylase (UDG) removes uracil from U.A or U.G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack.

View Article and Find Full Text PDF

Phenazines, including pyocyanin and iodonin, are biologically active compounds that are believed to confer producing organisms with a competitive growth advantage, and also are thought to be virulence factors in certain diseases including cystic fibrosis. The basic, tricyclic phenazine ring system is synthesized in a series of poorly characterized steps by enzymes encoded in a seven-gene cistron in Pseudomonas and other organisms. Despite the biological importance of these compounds, and our understanding of their mode of action, the biochemistry and mechanisms of phenazine biosynthesis are not well resolved.

View Article and Find Full Text PDF

The glycosidic bond hydrolysis reaction of the enzyme uracil DNA glycosylase (UDG) occurs by a two-step mechanism involving complete bond breakage to the uracil anion leaving group in the first step, formation of a discrete glycosyl cation-uracil anion intermediate, followed by water attack in a second transition-state leading to the enzyme-bound products of uracil and abasic DNA. We have synthesized and determined the binding affinities of unimolecular mimics of the substrate and first transition-state (TS1) in which the uracil base is covalently attached to the sugar, and in addition, bimolecular mimics of the second addition transition state (TS2) in which the base and sugar are detached. We find that the bipartite mimics of TS2 are superior to the TS1 mimics.

View Article and Find Full Text PDF