Due to the influence of self-absorption of major elements, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha-Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively.
View Article and Find Full Text PDFIn this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered.
View Article and Find Full Text PDFWe report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
March 2016
In order to investigate the emission enhancement mechanisms of reheating Double Pulse Laser-Induced Breakdown Spectroscopy (DP-LIBS), single pulse LIBS (SP-LIBS) and reheating DP-LIBS were carried out on an alloy steel sample respectively. The plasma emission was collected by an Echelle spectrometer with high resolution, while the plasma structure was monitored via fast-photography. The temporal and spatial evolutio ns of the plasma generated by SP-LIBS and reheating DP-LIBS were being studied.
View Article and Find Full Text PDFWe propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions.
View Article and Find Full Text PDFTime-resolved spectra of neutral and ionized atomic emissions from slag sample are measured by laser-induced breakdown spectroscopy (LIBS). Various factors affecting the calibration-free CF-LIBS method are carefully analyzed, and subsequently these factors are either avoided or corrected. Plasma temperature and electron density are calculated by Saha-Boltzmann plot and Stark broadening of Ca, respectively.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
September 2014
In order to overcome the influence of self-absorption on quantitative analysis, the optimizing process of very fast simulated annealing algorithm was studied. According to basic theory of plasma emission spectrum, a new algorithm for self-absorpton correction based on multi-particles spectra was proposed, and the algorithm flowchart was given. With the self-absorption correction algorithm mentioned above, the spectra of refining slag and blast furnace slag were corrected.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
December 2011
Calibration-free laser induced breakdown spectroscopy (CF-LIBS) was employed for the quantitative analysis of slag. Nd:YAG laser ablation was performed in air. The laser-induced plasma emission was measured by an Echelle spectrometer equipped with an ICCD.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
September 2011
Quantitative analysis of trace elements such as manganese and chromium in steel was performed employing laser-induced breakdown spectroscopy (LIBS) technique in the present paper. The experimental measurements indicate that the optimal delay, focal plane and detecting position from the sample surface are 2 micros, -3.5 mm and 1.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
October 2009
Oxygen is a widely used important gas in the industrial process. It is very meaningful to on-line monitor the oxygen concentration for the enhancement of combustion efficiency and reduction in environmental pollution. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
July 2006
Tunable diode laser absorption spectroscopy has been applied in the fields of atmospheric chemistry and monitoring pollutant gases as a new method of measuring trace gases. The technique of remote sensing of CO and CO2 at 760 mm Hg pressure with tunable diode laser absorption spectroscopy in the near-infrared region is introduced. And the relationship between the second-harmonic spectrum of CO2 in Lorentzian line shape and the modulation amplitude is also presented.
View Article and Find Full Text PDFAn effective method for achieving a room-temperature multiwavelength erbium-doped fiber ring laser is presented. Simultaneous multiwavelength lasing with 0.5-nm intervals is achieved both experimentally and theoretically by addition of sinusoidal phase modulation in the ring cavity to prevent single-wavelength oscillation.
View Article and Find Full Text PDF