Publications by authors named "Fengyuan Shi"

In this work, a novel, to our knowledge, visible light communication (VLC) channel model is proposed for underground mining scenarios taking into account the impact of coal dust particles and obstacles. Specifically, the extinction effect of the coal dust particles is analyzed on the basis of the Mie theory, and the quantitative formula of the influence on channel direct current (DC) gain is derived. Meanwhile, the effect of a random shadowing phenomenon is investigated and quantified with the geometric and statistical model considering the position, size, and shape of the obstacles.

View Article and Find Full Text PDF

Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways.

View Article and Find Full Text PDF

Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood.

View Article and Find Full Text PDF

Multimodal transformer exhibits high capacity and flexibility to align image and text for visual grounding. However, the existing encoder-only grounding framework (e.g.

View Article and Find Full Text PDF

Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques.

View Article and Find Full Text PDF

Reinforcement learning (RL) is a promising approach to tackling learning and decision-making problems in a dynamic environment. Most studies on RL focus on the improvement of state evaluation or action evaluation. In this article, we investigate how to reduce action space by using supermodularity.

View Article and Find Full Text PDF

The intelligent reflecting surface (IRS) and angle diversity receiver (ADR) jointly assisted indoor visible light communication (VLC) system is proposed to improve average signal-to-noise ratio (ASNR) performance. Specifically, to maximize the ASNR at the receiving plane, the roll angle and yaw angle of IRS and the inclination angle of the side detector in the ADR structure are optimized simultaneously as one non-convex problem. With the bat algorithm, the optimal solution is numerically obtained.

View Article and Find Full Text PDF

Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities.

View Article and Find Full Text PDF

Electrochemical intercalation can enable lithium extraction from dilute water sources. However, during extraction, co-intercalation of lithium and sodium ions occurs, and the response of host materials to this process is not fully understood. This aspect limits the rational materials designs for improving lithium extraction.

View Article and Find Full Text PDF

Controlling the ion transport through graphene oxide (GO) membrane is challenging, particularly in the aqueous environment due to its strong swelling tendency. Fine-tuning the interlayer spacing and chemistry is critical to create highly selective membranes. We investigate the effect of single-site divalent cations in tuning GO membrane properties.

View Article and Find Full Text PDF

Conducting or semiconducting materials embedded in insulating polymeric substrates can be useful in biointerface applications; however, attainment of this composite configuration by direct chemical processes is challenging. Laser-assisted synthesis has evolved as a fast and inexpensive technique to prepare various materials, but its utility in the construction of biophysical tools or biomedical devices is less explored. Here, we use laser writing to convert portions of polydimethylsiloxane (PDMS) into nitrogen-doped cubic silicon carbide (3C-SiC).

View Article and Find Full Text PDF

Bacterial response to transient physical stress is critical to their homeostasis and survival in the dynamic natural environment. Because of the lack of biophysical tools capable of delivering precise and localized physical perturbations to a bacterial community, the underlying mechanism of microbial signal transduction has remained unexplored. Here, we developed multiscale and structured silicon (Si) materials as nongenetic optical transducers capable of modulating the activities of both single bacterial cells and biofilms at high spatiotemporal resolution.

View Article and Find Full Text PDF

Silicon-based materials have been widely used. However, remotely controlled and interconnect-free silicon configurations have been rarely explored, because of limited fundamental understanding of the complex physicochemical processes that occur at interfaces between silicon and biological materials. Here, we describe rational design principles, guided by biology, for establishing intracellular, intercellular and extracellular silicon-based interfaces, where the silicon and the biological targets have matched properties.

View Article and Find Full Text PDF

Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk.

View Article and Find Full Text PDF

Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls.

View Article and Find Full Text PDF

There are emerging opportunities to harness diverse and complex geometric architectures based on nominal two-dimensional atomically layered structures. Herein we report synthesis and properties of a new core-shell heterostructure, termed Au@MoS, where the Au nanoparticle is snugly and contiguously encapsulated by few shells of MoS atomic layers. The heterostructures were synthesized by direct growth of multilayer fullerene-like MoS shell on Au nanoparticle cores.

View Article and Find Full Text PDF

The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system.

View Article and Find Full Text PDF

Due to their unique optoelectronic properties and potential for next generation devices, monolayer transition metal dichalcogenides (TMDs) have attracted a great deal of interest since the first observation of monolayer MoS2 a few years ago. While initially isolated in monolayer form by mechanical exfoliation, the field has evolved to more sophisticated methods capable of direct growth of large-area monolayer TMDs. Chemical vapor deposition (CVD) is the technique used most prominently throughout the literature and is based on the sulfurization of transition metal oxide precursors.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that MnTe can be incorporated into SnTe at levels exceeding 9 mol%, enhancing its thermoelectric properties.
  • The addition of MnTe increases the Seebeck coefficient significantly while reducing electrical conductivity, leading to improved power factors and higher Seebeck coefficients than theoretical expectations.
  • High levels of Mn doping promote better band convergence and phonon scattering, resulting in a low thermal conductivity and a high thermoelectric figure of merit of 1.3 at 900 K.
View Article and Find Full Text PDF

We report a significant enhancement of the thermoelectric performance of p-type SnTe over a broad temperature plateau with a peak ZT value of ∼1.4 at 923 K through In/Cd codoping and a CdS nanostructuring approach. Indium and cadmium play different but complementary roles in modifying the valence band structure of SnTe.

View Article and Find Full Text PDF

Ultra-flexible and transparent metal oxide transistors are developed by doping In2 O3 films with poly(vinylphenole) (PVP). By adjusting the In2 O3 :PVP weight ratio, crystallization is frustrated, and conducting pathways for efficient charge transport are maintained. In2 O3 :5%PVP-based transistors exhibit mobilities approaching 11 cm(2) V(-1) s(-1) before, and retain up to ca.

View Article and Find Full Text PDF

Two-dimensional (2D) electronic systems are of wide interest due to their richness in chemical and physical phenomena and potential for technological applications. Here we report that [Pb2BiS3][AuTe2], known as the naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets.

View Article and Find Full Text PDF

Ultrathin transition metal dichalcogenides (TMDCs) of Mo and W show great potential for digital electronics and optoelectronic applications. Whereas early studies were limited to mechanically exfoliated flakes, the large-area synthesis of 2D TMDCs has now been realized by chemical vapor deposition (CVD) based on a sulfurization reaction. The optoelectronic properties of CVD grown monolayer MoS2 have been intensively investigated, but the influence of stoichiometry on the electrical and optical properties has been largely overlooked.

View Article and Find Full Text PDF

SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid-phase catalytic reactions (e.

View Article and Find Full Text PDF