Reproductive investment decision is an integral part of life-history theory. Differential allocation hypothesis predicts that females should increase investment when mated to high-quality males, conversely, reproductive compensation hypothesis predicts that females should increase investment when mated to low-quality males. Empirical research dominantly focuses on polygamous species and rarely on serially monogamous species.
View Article and Find Full Text PDFMethionine is an essential amino acid that initiates protein synthesis and serves as a substrate for various chemical reactions. Methionine metabolism plays an important role in seed germination, but how methionine works in seed germination of maize has not been elucidated. We compared the changes in germination rate, the contents of methionine and folates, and transcriptional levels using transcriptome analysis under water or exogenous methionine treatment.
View Article and Find Full Text PDFA widely used approach to restoring marine fishery resources is stock enhancement using hatchery-reared fish. However, artificial rearing environments, which are often lacking in enrichment, may negatively affect the cognition, welfare, and adaptive capacity to new environments of juvenile fish, thereby leading to low post-release survival rates. This study examined the effects of habitat and social enrichment on the growth performance and cognitive ability of .
View Article and Find Full Text PDF(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420.
View Article and Find Full Text PDFThe surrounding environments that animals inhabit shape their behavioral phenotypes, physiological status and molecular processes. As one of the driving forces for the adaptation and evolution of marine animals, environmental complexity has been shown to affect several behavioral characteristics in fish. However, little is known about the effects of environmental complexity on fish spatial cognition and about the relevant regulatory mechanisms.
View Article and Find Full Text PDF