Publications by authors named "Fengyuan Qian"

Background: Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC.

View Article and Find Full Text PDF

Background: Paclitaxel (PTX) treatment resistance is an important factor leading to poor prognosis in triple-negative breast cancer (TNBC), therefore there is an urgent need to identify new target for combination therapy. Neddylation is a post-translational process that introduces a ubiquitin-like protein called neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Previous studies have found that neddylation is activated in multiple tumors, but its relationship with PTX chemotherapy sensitivity has not been reported.

View Article and Find Full Text PDF

Introduction: Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown.

Objectives: Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression.

View Article and Find Full Text PDF

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression.

View Article and Find Full Text PDF

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown.

View Article and Find Full Text PDF

A common and most basic brain tumor is glioma that is exceptionally dangerous to health of various patients. A glioma segmentation, which is primarily magnetic resonance imaging (MRI) oriented, is considered as one of common tools developed for doctors. These doctors use this system to examine, analyse, and diagnose appearance of the glioma's outward for both patients, i.

View Article and Find Full Text PDF

Our previous studies have illustrated that CacyBP/SIP (Calcyclin-binding protein or Siah-1-interacting protein) promoted the proliferation of glioma cells. However, the possible mechanism still needs to be clarified. In the current study, we aimed to uncover the potential mechanism of CacyBP/SIP in regulating glioma cell proliferation.

View Article and Find Full Text PDF

Jab1 (Jun activation domain-binding protein 1), also known as CSN5 (COP9 signalosome subunit 5), is frequently overexpressed in several cancer types. However, the biological functions and the molecular mechanisms of the Jab1 protein in human gliomas have not been investigated. In this study, we found that Jab1 protein was increasingly expressed in human glioma tissues comparing with normal brain tissues (Non-tumor).

View Article and Find Full Text PDF

Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates.

View Article and Find Full Text PDF

Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87.

View Article and Find Full Text PDF