Single atom nanozyme (SAzyme) based on carbon dots (CDs) has showed great potential in oncotherapy via ultrasmall size-reinforced atomically dispersed catalytic sites. However, its curative effect is still unsatisfactory due to complex tumor microenvironment and intrinsic resistance. Herein, a coordinated carbon dots (CCDs)-integrated ZIF-8 nanoassembly (Ru/CCDs-PTX@ZIF) was constructed by loading paclitaxel and coating with rutin for synergistic catalytic/chemotherapy.
View Article and Find Full Text PDFRevealing the spatiotemporal coupling relationship between urbanization and ecosystem services can help to clarify regional development differences, optimize the implementation path of urbanization, and improve the quality of ecosystem services. Taking southeastern Fujian, a region with a good ecological foundation and strong urbanization potential, as a case study, the levels of multidimensional urbanization systems and typical ecosystem services of this region in the years 2000, 2010, and 2020 were quantified using the index comprehensive evaluation method and the InVEST model. The Pearson correlation coefficient and the coupling coordination degree model were used to analyze the spatiotemporal coupling relationship between urbanization and ecosystem services, and suggestions for improving regional coordinated development were proposed.
View Article and Find Full Text PDFThe widespread use of antibiotics often increases bacterial resistance. Herein, we reported a silver peroxide-incorporated carbon dots (defined as AgO-CDs) with high photothermal conversion efficiency viaoxidation process. The prepared AgO-CDs exhibited ultra-small size of 2.
View Article and Find Full Text PDFTumor vaccine, which can effectively prevent tumor recurrence and metastasis, is a promising tool in tumor immunotherapy. However, heterogeneity of tumors and the inability to achieve a cascade effect limit the therapeutic effects of most developing tumor vaccine. We have developed a cascading immunoinducible in-situ mannose-functionalized polydopamine loaded with imiquimod phenylboronic hyaluronic acid nanocomposite gel vaccine (M/P-PDA@IQ PHA) through a boronic ester-based reaction.
View Article and Find Full Text PDFInjectable hydrogels are gaining prominence as a biocompatible, minimally invasive, and adaptable platform for cartilage tissue engineering. Commencing with their synthesis, this review accentuates the tailored matrix formulations and cross-linking techniques essential for fostering three-dimensional cell culture and melding with complex tissue structures. Subsequently, it spotlights the hydrogels' enhanced properties, highlighting their augmented functionalities and broadened scope in cartilage tissue repair applications.
View Article and Find Full Text PDFPhototherapy can trigger immunogenic cell death of tumors in situ, whereas it is virtually impossible to eradicate the tumor due to the intrinsic resistance and inefficient anti-tumor immunity. To overcome these limitations, novel bimetallic infinite coordination nanopolymers (TA-Fe/Mn-OVA@MB NPs) were synthesized using model antigen ovalbumin (OVA) as a template to assemble tannic acid (TA) and bi-metal, supplemented with methylene blue (MB) surface absorption. The formulated TA-Fe/Mn-OVA@MB NPs possess excellent photothermal and photodynamic therapy (PTT/PDT) performance, which is adequate to destroy tumor cells by physical and chemical attack.
View Article and Find Full Text PDFDespite advances in combined photothermal/immunotherapy of tumor, the therapeutic effect has been impaired due to hypoxic microenvironment and inadequate immune activation. Manganese ions directly activated the stimulator of interferon genes (STING) pathway and induced innate antitumor immunity. Herein, a near infrared light (NIR)-responsive nanoenzyme (PB-Mn/OVA NE) was constructed by doping manganese into the ovalbumin (OVA)-templated Prussian blue (PB) nanoparticles.
View Article and Find Full Text PDFImmunogenic tumor cell death (ICD) induced by photothermal therapy (PTT) fails to elicit a robust antitumor immune response partially due to its inherent immunosuppressive microenvironment and poor antigen presentation. To address these issues, we developed an immunoinducible carbon dot-incorporated hydrogel (iCD@Gel) through a dynamic covalent Schiff base reaction using mannose-modified aluminum-doped carbon dots (M/A-CDs) as a cross-linking agent. The M/A-CDs possessed superior photothermal conversion efficiency and served as nanocarriers to load cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) for inducing the maturation of dendritic cells (DCs) via mannose receptor-mediated targeting delivery.
View Article and Find Full Text PDFPhotothermal therapy (PTT) is a promising treatment that efficiently suppresses local cancer, but fails to induce a robust antitumor immune response against tumor metastasis and recurrence. In this study, a NIR responsive nano-immunostimulant (Mn/A-HP NI) is fabricated by entrapping manganese and azo-initiator (AIPH) into hyaluronic acid-based polypyrrole nanoparticle. The as-prepared Mn/A-HP NIs with a high photothermal conversion efficiencey of 20.
View Article and Find Full Text PDFCalvarial bone defect remains a clinical challenge due to the lack of efficient osteo-inductive agent. Herein, a novel calcium and phosphorus codoped carbon dot (Ca/P-CD) for bone regeneration was synthesized using phosphoethanolamine and calcium gluconate as precursors. The resultant Ca/P-CDs exhibited ultra-small size, stable excitation dependent emission spectra and favorable dispersibility in water.
View Article and Find Full Text PDFBackground: Phototherapy-triggered immunogenic cell death (ICD) rarely elicits a robust antitumour immune response, partially due to low antigen exposure and inefficient antigen presentation. To address these issues, we developed novel methylene blue-loaded ovalbumin/polypyrrole nanoparticles (MB@OVA/PPY NPs) via oxidative polymerization and π-π stacking interactions.
Results: The as-prepared MB@OVA/PPY NPs with outstanding photothermal conversion efficiency (38%) and photodynamic properties were readily internalized into the cytoplasm and accumulated in the lysosomes and mitochondria.
Photothermal ablation could be considered an effective treatment for tumors, but accurate administration and enrichment of photothermal agents remain a huge challenge. Herein, a mussel-inspired photothermal polymeric hydrogel (PPH) was synthesized through a ferric iron-triggered simultaneous metal-catechol coordination reaction and oxidative polymerization of covalently linked pyrrole. The PPH with rapid gelation (less than 10 s) exhibited high photothermal conversion efficiency (49.
View Article and Find Full Text PDFStroke is the leading cause of death and disability. Currently, there is no effective pharmacological treatment for this disease, which can be partially attributed to the inability to efficiently deliver therapeutics to the brain. Here we report the development of natural compound-derived nanoparticles (NPs), which function both as a potent therapeutic agent for stroke treatment and as an efficient carrier for drug delivery to the ischemic brain.
View Article and Find Full Text PDFCurcumin as a hydrophobic polyphenol has great potential for tumor therapy, yet its rapid degradation and hydrophobicity severely impair its therapeutic effect in the clinic. Herein, we report a novel strategy for the formation of curcumin doped zeolitic imidazolate framework nanoparticles (Cur-ZIF NPs) by zinc ion driven simultaneous coordination of curcumin and 2-methylimidazole. The resultant Cur-ZIF NPs with a uniform nanosize exhibit favorable stability and dispersibility in water, as well as high drug-loading capacities.
View Article and Find Full Text PDFCarbon quantum dots (CQDs) are an emerging class of quasi-zero-dimensional photoluminescent nanomaterials with particle sizes less than 10 nm. Owing to their favourable water dispersion, strong chemical inertia, stable optical performance, and good biocompatibility, CQDs have become prominent in biomedical fields. CQDs can be fabricated by "top-down" and "bottom-up" methods, both of which involve oxidation, carbonization, pyrolysis and polymerization.
View Article and Find Full Text PDFAlthough multidrug combinations are an effective therapeutic strategy for serious disease in clinical practice, their therapeutic effect may be reduced because they conflict with each other medicinally in certain cases. Hence, there is an urgent need to develop a single drug carrier for precise multidrug delivery to avoid this interference. A reverse coordination method is reported that fabricates a double-layer barium sulphate microcapsule (DL@BS MS) for two drugs separately loading simultaneously.
View Article and Find Full Text PDFFerroptosis as an iron-dependent lipid peroxidation process causes sevely oxidative damage of cell, but lack of highly efficient and recycable antioxidant agents. To this end, cerium doped carbon dots (Ce-doped CDs) with radical scavenging activity were synthesized using a simple microwave-assisted hydrothermal carbonization. The resultant Ce-doped CDs exhibited an ultra-small size of only approximately 2.
View Article and Find Full Text PDFBackground: Therapeutic tumor vaccine (TTV) that induces tumor-specific immunity has enormous potentials in tumor treatment, but high heterogeneity and poor immunogenicity of tumor seriously impair its clinical efficacy. Herein, a novel NIR responsive tumor vaccine in situ (HA-PDA@IQ/DOX HG) was prepared by integrating hyaluronic acid functionalized polydopamine nanoparticles (HA-PDA NPs) with immune adjuvants (Imiquimod, IQ) and doxorubicin (DOX) into thermal-sensitive hydrogel.
Results: HA-PDA@IQ NPs with high photothermal conversion efficiency (41.
Methyl-CpG-binding protein 2 (MeCP2) has been characterized as an oncogene in several types of cancer. However, its precise role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Hence, this study aimed to evaluate the potential role of MeCP2 in pancreatic cancer progression.
View Article and Find Full Text PDFBreast cancer brain metastases (BCBMs) represent a major cause of morbidity and mortality among patients with breast cancer. Chemotherapy, which is widely used to treat tumors outside of the brain, is often ineffective on BCBMs due to its inability to efficiently cross the blood-brain barrier (BBB). Although the BBB is partially disrupted in tumor lesions, it remains intact enough to prevent most therapeutics from entering the brain.
View Article and Find Full Text PDFInaccuracy localization and intrinsic radioresistance of solid tumors seriously hindered the clinical implementation of radiotherapy. In this study, we fabricated hyaluronic acid-functionalized gadolinium oxide nanoparticles (HA-GdO NPs) via one-pot hydrothermal process for effective magnetic resonance (MR) imaging and radiosensitization of tumors. By virtue of HA functionalization, the as-prepared HA-GdO NPs with a diameter of 105 nm showed favorable dispersibility in water, low cytotoxicity, and excellent biocompatibility and readily entered into the cytoplasm of cancer cells by HA receptor-mediated endocytosis.
View Article and Find Full Text PDFTo enhance the therapeutic efficiency and reduce side effects from drug delivery and chemotherapy, image-guided nanoscale systems have attracted tremendous attention in recent decades. In this study, we developed a novel method to fabricate a colchicine/gadolinium-loaded tubulin self-assembly nanocarrier (Col-Gd@Tub NC) for the image-guided chemotherapy of glioma. The Col-Gd@Tub NCs were spontaneously formed via tubulin self-assembly and were subsequently functionalized by colchicine and gadolinium elements.
View Article and Find Full Text PDFProtein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up-regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis.
View Article and Find Full Text PDF