A mussel-inspired multiwalled carbon nanotube (MWCNT) nanocomposite (MWCNTs@CCh-PEI) was prepared by the co-deposition of catechol (CCh)/polyethyleneimine (PEI) and modification of MWCNTs for the efficient removal of methyl orange (MO). The effects of MO solution pH, contact time, initial MO concentration, and temperature on the adsorption capacity of MWCNTs@CCh-PEI were investigated. The results indicate that the adsorption capacity of MWCNTs@CCh-PEI was two times higher than that of pristine MWCNTs under the same conditions.
View Article and Find Full Text PDFWhen activated by unconjugated bilirubin (UCB), inflammatory mediators such as IL - 18 and TNF contribute to the neurotoxicity and ototoxicity observed in severe neonatal hyperbilirubinemia. However, in cell and molecular level, the regulation and mechanism of UCB-induced ototoxicity are remained unclear. In this study, 7-day-old mammary rats were exposed to various concentrations of UCB to imitate the infant auditory damage.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2022
This research on porphyrin-based photosensitizer system has a very important theoretical and practical significance in the photodynamic therapy (PDT) treatment of cancer. Based on this, in this article, a series of porphyrin derivatives were first designed and synthesized, and a "push-pull" porphyrin photosensitizer with two symmetrical ethanethioate groups was finally constructed. Based on the characterization of their chemical structures (H andC NMR, MS, IR, and UV-Vis spectroscopy) and the use of the density functional theory (DFT) and time-dependent DFT (TDDFT) to address the nature of the excited states as well as the dark/phototoxicity, the results have indicated the relationship between the porphyrin structure and properties.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
In this work, we theoretically studied the optical absorption properties of a layer-stacked cocrystal heterogeneous material Spe-TCNB cocrystal (STC) which is produced by supramolecular self-assembly of organic conjugated monomers SPE and TCNB. The highly ordered aggregate structure in the cocrystal STC will lead to intermolecular interactions such as π∼π, hydrogen bonds and van der Waals forces, resulting in significant charge transfer characteristics and large cross-sectional two-photon absorption characteristics. The physical mechanism of one-photon and two-photon charge transfer of cocrystal molecules is specifically discussed and the interaction between molecules and their role in charge transfer are quantitatively analyzed.
View Article and Find Full Text PDFStimulus-responsive polymers with luminescence properties have a wide range of applications in the fields of controlled drug release, fluorescent probes, and biological stents. In this paper, carbon dioxide (CO)/oxygen (O) dual-responsive fluorescent diblock copolymers were synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization method with two fluorescent monomers synthesized as its luminescence source, DEAEMA (CO responsive monomer) and tFMA (O responsive monomer). An experimental study demonstrated that the synthesized stimulus-responsive fluorescent polymer had a high sensitivity to CO; the double-responsive fluorescent diblock copolymer could form and achieve the reversal of polymer micelles in the aqueous solution when it was sequentially subjected to the introduction of CO and O.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2021
Machine learning (ML) has been widely used in microbiome research for biomarker selection and disease prediction. By training microbial profiles of samples from patients and healthy controls, ML classifiers constructs data models by community features that highly correlated with the target diseases, so as to determine the status of new samples. To clearly understand the host-microbe interaction of specific diseases, previous studies always focused on well-designed cohorts, in which each sample was exactly labeled by a single status type.
View Article and Find Full Text PDFZn-doped CaTiO3:Eu(3+) red phosphors for enhanced photoluminescence in white light-emitting diodes (LEDs) were synthesized by a solid-state method. The structure and morphology of the obtained phosphor samples were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties.
View Article and Find Full Text PDFTelomerase reconstitution shows great potential for cell treatment and tissue engineering. Although the effects of telomerase on cell lifespan are well documented, the effects of telomerase on cellular biological characteristics, such as cellular migration, are relatively unknown. In this study, we tried to investigate if telomerase is involved in the regulation of fibroblast migration and the mechanism behind it.
View Article and Find Full Text PDF