Publications by authors named "Fengyan Ge"

The wastewater of printing and dyeing is difficult to treat due to the degradation resistance of dye and the use of massive chemicals, causing a threat to the ecosystem. Pigment printing of fabrics possesses great advantages like high efficiency and flexible production, but there are some challenges like the risk of color depth and hand feeling due to the large size of the pigment and poor adsorption of light. In order to improve the coloration ability of pigment, herein, a novel kind of cationic dye/porous silica nanospheres were prepared through the adsorption of methylene blue and rhodamine B onto electronegative porous silica nanospheres and applied in printing on woven cotton fabric.

View Article and Find Full Text PDF

With the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat-related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy.

View Article and Find Full Text PDF

In order to address the requirements for warmth and energy conservation in cold climates, the development of personal thermal management textiles that regulate local human thermal comfort has emerged as a promising solution in recent times. Nevertheless, existing warming textile strategies often rely on a singular energy source, exhibit inadequate air/moisture permeability, and lack adaptability to dynamic and intricate climate variations. Herein, a novel multienergy-coupled radiative warming Janus textile has been effectively designed and fabricated via screen printing and foam finishing.

View Article and Find Full Text PDF

Homogeneously dispersed copper nanowire (CuNW) materials are the basis for practical applications in many types of electronic devices. At present, the dispersion of CuNWs in water is achieved through polymeric spatial site resistance effects primarily and the electrostatic dispersion mechanism in a few. However, the electrical conductivity of CuNWs could be weakened by the excessive addition of polymers; therefore, it is difficult to maintain a stable dispersion enduringly for surface charge modifiers.

View Article and Find Full Text PDF

Multifunctional wearable heaters have attracted much attention owing to their efficient application in personal thermal management. Inspired by the polar bear's thermal management, a laminated fabric with enhanced photothermal conversion, mid-infrared reflection, thermal insulation, and electrical heating performance was developed in this work, which was made of CNT/cellulose aerogel layers, cotton fabrics, and copper nanowire (CuNW)-based conductive network (CNN) layers. The CNN layer made up of highly conductive CuNWs not only exhibits better conductivity to realize the Joule heating effect but also possesses a human mid-infrared reflection property.

View Article and Find Full Text PDF

The composite material composed of zinc sulfide, copper sulfide and porous carbon is prepared in this study, exhibiting excellent performances in the field of supercapacitor electrode and photocatalysts. In the degradation process of organic pollutants, zinc sulfide/copper sulfide with heterostructure effectively reduce the recombination rate of photo-generated electron-hole pairs. And the porous carbon substrate can not only accelerate the separation of photo-carriers but also provide numerous active sites.

View Article and Find Full Text PDF

A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS.

View Article and Find Full Text PDF

A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method.

View Article and Find Full Text PDF

The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.

View Article and Find Full Text PDF

A facile and highly efficient method for the fabrication of free-standing three-dimensional (3D) composites with different morphologies was designed by the combination of the electrospinning method and hydrothermal reaction. The controlled hierarchical nanoarrays showed excellent electrochemical performance for their potential use as supercapacitor electrodes.

View Article and Find Full Text PDF

In the title compound, C(21)H(24)O(2), rings B, C and D adopt half-chair, distorted half-chair and envelope conformations, respectively. In the crystal structure, there is an inter-molecular O-H⋯O hydrogen bond. The mol-ecules are arranged in a head-to-tail fashion, with the meth-oxy and hydr-oxy groups forming a two-dimensional hydrogen-bond network.

View Article and Find Full Text PDF

A series of regiospecific chlorinated fluoresceins have been synthesized by the reaction of the regiospecific chlorinated resorcinols with chlorinated phthalic anhydride. The regioisomers were successfully separated by chromatography. The photophysical properties of the obtained chlorinated fluoresceins were examined and found their absorption and emission maxima at long wavelength with high fluorescence quantum yield.

View Article and Find Full Text PDF

In air oxidation of penicillin G p-methoxybenzyl ester (PGPMB) to its sulfoxides (PGPMBO), sol-gel technique was employed to encapsulate the catalyst Co (acac)3, by which the reaction was run under heterogeneous conditions. A reversed-phase high performance liquid chromatographic method was established for the determination of the conversion of this reaction. The analysis of PGPMBO was carried out on a C18 column (4.

View Article and Find Full Text PDF

A new mixture of 4- and 7-chlorofluorescein were synthesized by condensation of resorcinol with 3-chlorophthalic anhydride in the presence of methanesulfonic acid or zinc chloride. These regioisomers were successfully separated by chromatography. The photophysical properties were examined and their absorption and emission maxima at long wavelength, high fluorescence quantum yield, and narrow emission bandwidth were found, highly favorable for detecting multiple target substances in the same sample.

View Article and Find Full Text PDF