Publications by authors named "Fengxin Wu"

Myocardium is an excitable tissue with electrical conductivity and mechanical strength. In this work, carbon fibers (CFs) and co-axial fibrous mesh were integrated which combined the high modulus and excellent electrical conductivity of CFs and the fibrous and porous structures of the electrospun fibers. The scaffold was fabricated by simply integrating coaxial electrospun fibers and carbon fibers through a freeze-drying procedure.

View Article and Find Full Text PDF

Lung cancer remains the leading cause of cancer deaths worldwide. Although low-dose spiral computed tomography (LDCT) screening is used for the detection of lung cancer in a high-risk population, false-positive results of LDCT remain a clinical problem. Here, we developed a blood test of a novel panel of three established lung cancer methylation biomarkers for lung cancer detection.

View Article and Find Full Text PDF

Objective: This study investigated the association between syphilis seroprevalence and age among blood donors, and described the distribution of serological titres among syphilis-infected donors, aiming to confirm the syphilis epidemic characteristics and to promote effective interventions for older adults.

Methods: Data were obtained from the Shenzhen Programme for Syphilis Prevention and Control in 2014-2017. Blood samples were screened using the ELISAs, and confirmed using the particle agglutination assay (TPPA) and toluidine red unheated serum test (TRUST).

View Article and Find Full Text PDF

Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs.

View Article and Find Full Text PDF

Macrophages are involved in all phases of scaffold induced tissue regeneration, orchestrating the transition from an inflammatory to regenerative phenotype to guide all other cell types to complete the wound healing process when a tissue defect advances beyond the critical size. Therefore, harnessing macrophages by scaffolds is important for facilitating tissue regeneration in situ. In this work we utilized the superparamagnetic scaffold upon magnetization as a mechanostimulation platform to apply forces directly to macrophages grown in the scaffold, aiming to figure out whether the functions of macrophages related to bone tissue regeneration can be mechanomodulated and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Unlabelled: Cationic macromolecules are attractive for use as small interfering RNA (siRNA) carriers due to their performance in non-immunological reactions, customization during synthesis, and low costs compared to viral carriers. However, their low transfection efficiency substantially hinders their application in both clinical practices and academic research, which is mostly attributable to the low capacity of siRNA/cationic macromolecule complexes to escape lysosomes. To address this challenge, we designed an amphiphilic fullerene derivative (C-Dex-NH) for efficient and controllable siRNA delivery.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2349p79jbqlvf43eil52vgjs425hjiae): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once