Publications by authors named "Fengxiao Xiong"

Unlabelled: Activation of sphingosine kinase 1 (SphK1) signaling pathway mediates fibronectin (FN) upregulation in glomerular mesangial cells (GMCs) under high glucose (HG) condition. However, the roles of SphK1 in advanced glycation end products (AGEs)-induced DN have not been elucidated. Here we show that AGEs upregulated FN and SphK1 and SphK1 activity.

View Article and Find Full Text PDF

Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN.

View Article and Find Full Text PDF

RhoA/ROCK can cause renal inflammation and fibrosis in the context of diabetes by activating nuclear factor-κB (NF-κB). TGR5 is known for its role in maintaining metabolic homeostasis and anti-inflammation, which is closely related to NF-κB inhibition. Given that TGR5 is highly enriched in kidney, we aim to investigate the regulatory role of TGR5 on fibronectin (FN) and transforming growth factor-β1 (TGF-β1) in high glucose (HG)-treated rat glomerular mesangial cells (GMCs).

View Article and Find Full Text PDF
Article Synopsis
  • * Betulinic acid (BA), found in the bark of the white birch tree, has potential therapeutic effects on DN, yet its specific impacts have not been thoroughly studied.
  • * Research indicates that BA can inhibit the activation of a protein complex called NF-κB, which helps reduce fibronectin levels and prevent kidney scarring in diabetes by stabilizing the inhibitory protein IκBα.
View Article and Find Full Text PDF

Glucose and lipid metabolism disorders and chronic inflammation in the kidney tissues are largely responsible for causative pathological mechanism of renal fibrosis in diabetic nephropathy (DN). As our previous findings confirmed that, sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling activation promoted renal fibrosis in diabetes. Numerous studies have demonstrated that the G protein-coupled bile acid receptor TGR5 exhibits effective regulation of glucose and lipid metabolism and anti-inflammatory effects.

View Article and Find Full Text PDF

Berberine (BBR) exerts powerful renoprotective effects on diabetic nephropathy (DN), but the underlying mechanisms remain unclear. We previously demonstrated that activation of the G protein-coupled bile acid receptor TGR5 ameliorates diabetic nephropathy by inhibiting the activation of the sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling pathway. In this study, we explored the role of TGR5 in the BBR-induced downregulation of sphingosine 1-phosphate receptor 2 (S1P2)/mitogen-activated protein kinase (MAPK)-mediated fibrosis in glomerular mesangial cells (GMCs).

View Article and Find Full Text PDF

We previously demonstrated that activation of sphingosine kinase 1 (SphK1)- sphingosine 1- phosphate (S1P) signaling pathway by high glucose (HG) plays a pivotal role in increasing the expression of fibronectin (FN), an important fibrotic component, by promoting the DNA-binding activity of transcription factor activator protein 1 (AP-1) in glomerular mesangial cells (GMCs) under diabetic conditions. As a multi-target anti-oxidative drug, polydatin (PD) has been shown to have renoprotective effects on experimental diabetes. However, whether PD could resist diabetic nephropathy (DN) by regulating SphK1-S1P signaling pathway needs further investigation.

View Article and Find Full Text PDF