Int J Biol Macromol
January 2025
Background: To compare the clinical effects between wrist arthroscopy-assisted open reduction plus internal fixation, using the triangular fibrocartilage complex (TFCC) as an example, and simple open reduction plus internal fixation in the treatment of distal radius fractures (DRFs). The study aims to assess the efficacy of arthroscopic-assisted open reduction and internal fixation in treating distal radius fractures.
Methods: The study utilized a retrospective cohort research approach, involving 60 patients treated at Binzhou Medical University Hospital between August 2021 and October 2022.
Proc Natl Acad Sci U S A
March 2024
Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2023
Long-tail distribution is widely spread in real-world applications. Due to the extremely small ratio of instances, tail categories often show inferior accuracy. In this paper, we find such performance bottleneck is mainly caused by the imbalanced gradients, which can be categorized into two parts: (1) positive part, deriving from the samples of the same category, and (2) negative part, contributed by other categories.
View Article and Find Full Text PDFBackground: Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning.
View Article and Find Full Text PDFThe evolutionarily conserved Glycogen Synthase Kinase 3β (GSK3β), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3β regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3β homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis.
View Article and Find Full Text PDFDuring Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear.
View Article and Find Full Text PDFThe evolutionarily conserved CLASPs (cytoplasmic linker-associated proteins) are microtubule-associated proteins that inhibit microtubule catastrophe and promote rescue. CLASPs can regulate axonal elongation and dendrite branching in growing neurons. However, their roles in microtubule orientation and neurite pruning in remodeling neurons remain unknown.
View Article and Find Full Text PDFThe evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established.
View Article and Find Full Text PDFIt has long been thought that microtubule disassembly, one of the earliest cellular events, contributes to neuronal pruning and neurodegeneration in development and disease. However, how microtubule disassembly drives neuronal pruning remains poorly understood. Here, we conduct a systematic investigation of various microtubule-destabilizing factors and identify exchange factor for Arf6 (Efa6) and Stathmin (Stai) as new regulators of dendrite pruning in ddaC sensory neurons during Drosophila metamorphosis.
View Article and Find Full Text PDFCannabinoids have an important role in regulating feeding behaviors via cannabinoid receptors in mammals. Cannabinoids also exhibit potential therapeutic functions in Drosophila melanogaster, or fruit fly that lacks cannabinoid receptors. However, it remains unclear whether cannabinoids affect food consumption and metabolism in a cannabinoid receptors-independent manner in flies.
View Article and Find Full Text PDFNeuronal pruning is essential for proper wiring of the nervous systems in invertebrates and vertebrates. ddaC sensory neurons selectively prune their larval dendrites to sculpt the nervous system during early metamorphosis. However, the molecular mechanisms underlying ddaC dendrite pruning remain elusive.
View Article and Find Full Text PDFIn insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm and the fruit fly , 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate.
View Article and Find Full Text PDFDrosophila class IV ddaC neurons selectively prune all larval dendrites to refine the nervous system during metamorphosis. During dendrite pruning, severing of proximal dendrites is preceded by local microtubule (MT) disassembly. Here, we identify an unexpected role of Mini spindles (Msps), a conserved MT polymerase, in governing dendrite pruning.
View Article and Find Full Text PDFPruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete.
View Article and Find Full Text PDFThe ability of neural stem cells (NSCs) to transit between quiescence and proliferation is crucial for brain development and homeostasis. Drosophila Hippo pathway maintains NSC quiescence, but its regulation during brain development remains unknown. Here, we show that CRL4Mahj, an evolutionarily conserved E3 ubiquitin ligase, is essential for NSC reactivation (exit from quiescence).
View Article and Find Full Text PDFMutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development.
View Article and Find Full Text PDFUnlabelled: Class IV ddaC neurons specifically prune larval dendrites without affecting axons during metamorphosis. ddaCs distribute the minus ends of microtubules (MTs) to dendrites but the plus ends to axons. However, a requirement of MT minus-end-binding proteins in dendrite-specific pruning remains completely unknown.
View Article and Find Full Text PDFRefinement of the nervous system depends on selective removal of excessive axons/dendrites, a process known as pruning. Drosophila ddaC sensory neurons prune their larval dendrites via endo-lysosomal degradation of the L1-type cell adhesion molecule (L1-CAM), Neuroglian (Nrg). Here, we have identified a novel gene, pruning defect 1 (prd1), which governs dendrite pruning of ddaC neurons.
View Article and Find Full Text PDFPruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, the important role of endoplasmic reticulum (ER)-to-Golgi transport in dendrite pruning remains unknown.
View Article and Find Full Text PDFPruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning.
View Article and Find Full Text PDFDespite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD.
View Article and Find Full Text PDFThe Drosophila testis has been fundamental to understanding how stem cells interact with their endogenous microenvironment, or niche, to control organ growth in vivo. Here, we report the identification of two independent alleles for the highly conserved tumor suppressor gene, Retinoblastoma-family protein (Rbf), in a screen for testis phenotypes in X chromosome third-instar lethal alleles. Rbf mutant alleles exhibit overproliferation of spermatogonial cells, which is phenocopied by the molecularly characterized Rbf null allele.
View Article and Find Full Text PDF