We proposed two physical concepts, i.e., an intramolecular relative cross section (RCS) and an intermolecular relative scattering ability (RSA), to re-understand and re-describe surface-enhanced Raman scattering (SERS) and established a general SERS quantification theory.
View Article and Find Full Text PDFRobust quantitative analysis methods are very attractive but challenging with surface-enhanced Raman scattering (SERS) technique till now. Quantitative analysis methods using absolute Raman scattering intensities tend to desire very critical reproducibility of SERS substrates and consistency of testing conditions, as batch differences and inhomogeneity of SERS substrates as well as the fluctuation of measuring parameters placed challenging obstacles. Relative Raman scattering intensities, on the other hand, can release the adverse interferences mentioned above and provide effective and robust information as it is independent of the reproducibility of SERS substrates.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) has been utilized for rapid analysis of uranyl ions (UO ) on account of its fast response and high sensitivity. However, the difficulty of fabricating a suitable SERS substrate for in situ analysis of uranyl ions severely restricts its practical application. Hence, we proposed flexible and adhesive SERS tape decorated with silver nanorod (AgNR) arrays for in situ detection of UO .
View Article and Find Full Text PDFA flexible adhesive tape decorated with SERS-active silver nanorods (AgNRs) in the form of an array nanostructure is described. The tape was constructed by transferring the AgNRs nanostructures from silicon to the transparent tape by a "paste & peel off" procedure. The transparent, sticky, and flexible properties of commercial tapes allow almost any SERS-inactive irregular surface to be detected in-situ by pasting the SERS tape onto the position to be analyzed.
View Article and Find Full Text PDFAluminum has been established as an earth-abundant and low-cost alternative to gold and silver for plasmonic applications. Particularly, aluminum largely tends to combines with oxygen compared with silver. Here, a simple glancing angle deposition technique is presented to prepare Ag-Al alloy nanorods (NRs) with a small amount of aluminum.
View Article and Find Full Text PDF