Publications by authors named "Fengtao You"

Vδ1T cells, a rare subset of γδT cells, hold promise for treating solid tumors. Unlike conventional T cells, they recognize tumor antigens independently of the MHC antigen presentation pathway, making them a potential "off-the-shelf" cell therapy product. However, isolation and activation of Vδ1T cells is challenging, which has limited their clinical investigation.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the effectiveness of four types of CD19/CD22 bispecific CAR-T cells to improve treatment outcomes for B-cell tumors, addressing the high relapse rates seen with traditional CD19 CAR-T therapy.
  • Researchers compared these CAR-T cell structures based on their cytotoxicity, cytokine secretion, and ability to sustain tumor killing in laboratory settings, as well as in live mouse models.
  • Findings reveal that two specific bispecific CAR-T cell structures performed significantly better in controlling tumor growth, even when CD19 levels were low or absent, suggesting a promising new approach to enhancing CAR-T therapy.
View Article and Find Full Text PDF

Aims: Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models.

View Article and Find Full Text PDF

CD7 protein as a target is being used to treat CD7 lymphoma; however, the role of CD7 in the hematopoietic system remains largely unknown. Therefore, we evaluated the effects of CD7 KO in mice. The differentiation of the hematopoietic system in the bone marrow and the number of various cell types in the thymus and spleen did not differ between CD7 KO and WT mice.

View Article and Find Full Text PDF

Background And Aims: Chimeric antigen receptor (CAR)-T cell therapy is a novel type of immunotherapy. However, the use of CAR-T cells to treat acute myeloid leukaemia (AML) has limitations. B7-H3 is expressed in several malignancies, including some types of AML cells.

View Article and Find Full Text PDF

Purpose: Since CD7 may represent a potent target for T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) immunotherapy, this study aimed to investigate safety and efficacy of autologous CD7-chimeric antigen receptor (CAR) T cells in patients with relapsed and refractory (R/R) T-ALL/LBL, as well as its manufacturing feasibility.

Patients And Methods: Preclinical phase was conducted in NPG mice injected with Luc+ GFP+CCRF-CEM cells. Open-label phase I clinical trial (NCT04004637) enrolled patients with R/R CD7-positive T-ALL/LBL who received autologous CD7-CAR T-cell infusion.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 can achieve impressive clinical remission rates in the treatment of B-cell non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia. However, relapse after CD19-CAR T treatment remains a major issue, with CD19 antigen-negative relapse being one of the main reasons. CD22, another antigen expressed in a B-cell lineage-specific pattern, is retained following CD19 loss.

View Article and Find Full Text PDF

The great success of chimeric antigen receptor T (CAR-T)-cell therapy in B-cell malignancies has significantly promoted its rapid expansion to other targets and indications, including T-cell malignancies and acute myeloid leukemia. However, owing to the life-threatening T-cell hypoplasia caused by CD7-CAR-T cells specific cytotoxic against normal T cells, as well as CAR-T cell-fratricide caused by the shared CD7 antigen on the T-cell surface, the clinical application of CD7 as a potential target for CD7 malignancies is lagging. Here, we generated T cells using an anti-CD7 nanobody fragment coupled with an endoplasmic reticulum/Golgi retention domain and demonstrated that these cells transduced with CD7-CAR could prevent fratricide and achieve expansion.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) αβ T cell adoptive immunotherapy has shown great promise for improving cancer treatment. However, there are several hurdles to overcome for the wide clinical application of CAR-αβ T cells therapy, including side effects and a limited T cells source from cancer patients. Therefore, we sought to identify an alternative T cell subset that could avoid these limitations and improve the effectiveness of CAR-T immunotherapy.

View Article and Find Full Text PDF

Objective: To investigate the killing effect of NK-92MI cells modified by chimeric antigen receptor (CD7-CAR) and specifically targeting CD7 to CD7 hematological malignant cells.

Methods: Three types of hematological malignant tumor cells, including 5 cases of CD7 acute T-lymphoblastic leukemia (T-ALL), 10 cases of acute myeloid leukemia (AML) and 6 cases of T-cell lymphoma were collected, centrifuged, cultured and used to detect the expression levels of tumor cell surface targets; 7-AAD, CD56-APC, CD3-FITC, IgG Fc-PE flow cytometry were used to detected the transfection efficiency of NK-92MI and CD7-CAR-NK-92MI cells, killing efficiencies of CD7-CAR-NK-92MI cells to CD7 hematological tumor cells in vitro were determined by flow cytometry using PE Annexin V Apoptosis Detection Kit. Secretion differences of NK-92MI and CD7-CAR-NK-92MI cytokines interleukin (IL)-2, interferon (IFN)-γ, and granzyme B detection were estimated by using CBA kit.

View Article and Find Full Text PDF

CD19-directed chimeric antigen receptor (CAR) T cells have substantial benefit in the treatment of patients with B-cell malignancies. However, despite encouraging therapeutic efficiency, there is limited overall response rate when anti-CD19 CAR-T cells are used to treat patients with relapsed and refractory (R/R) B cell lymphomas. Therefore, it further investigation is urgently needed to improve treatment efficacy.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) immunotherapy has recently shown promise in clinical trials for B-cell malignancies; however, designing CARs for T-cell based diseases remain a challenge since most target antigens are shared between normal and malignant cells, leading to CAR-T cell fratricide. CD7 is highly expressed in T-cell acute lymphoblastic leukemia (T-ALL), but it is not expressed in one small group of normal T lymphocytes. Here, we constructed monovalent CD7-CAR-NK-92MI and bivalent dCD7-CAR-NK-92MI cells using the CD7 nanobody VHH6 sequences from our laboratory.

View Article and Find Full Text PDF

CAR T cells have shown clinical efficacy for acute lymphoblastic leukemia, but this therapy has not been effective for acute myeloid leukemia (AML), and other treatment options are needed. Theoretically, CAR-NK cells have a more favorable toxicity profile compared to CAR T cells, especially in avoiding adverse effects such as cytokine release syndrome. However, the clinical evidence for this has not yet been reported.

View Article and Find Full Text PDF

Natural killer (NK) cells play a pivotal role in monoclonal antibody-mediated immunotherapy through the antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. NK-92MI is an interleukin-2 (IL-2)-independent cell line, which was derived from NK-92 cells with superior cytotoxicity toward a wide range of tumor cells in vitro and in vivo. Nonetheless, the Fc-receptor (CD16) that usually mediates ADCC is absent in NK-92 and NK-92MI cells.

View Article and Find Full Text PDF

Recent progress in chimeric antigen receptor-modified T-cell (CAR-T cell) technology in cancer therapy is extremely promising, especially in the treatment of patients with B-cell acute lymphoblastic leukemia. In contrast, due to the hostile immunosuppressive microenvironment of a solid tumor, CAR T-cell accessibility and survival continue to pose a considerable challenge, which leads to their limited therapeutic efficacy. In this study, we constructed two anti-MUC1 CAR-T cell lines.

View Article and Find Full Text PDF

The finless porpoise (Neophocaena phocaenoides) is one of the smallest cetacean species. Research into the immune system of the finless porpoise is essential to the protection of this species, but, to date, no genes coding for proteins from the tumor necrosis factor family (TNF family) have yet been reported from finless porpoises. The TNF B cell activating factor (BAFF) is critical to B cell survival, proliferation, maturation, and immunoglobulin secretion and to T cell activation.

View Article and Find Full Text PDF

A proliferation-inducing ligand (APRIL) is a novel member of the tumor necrosis factor (TNF) superfamily, which is involved in immune regulation. In the present study, the full-length cDNA of APRIL (designated bAPRIL) from bat was cloned using RT-PCR and its biological activities have been characterized. The open reading frame (ORF) of this cDNA consists of 753 bases, encoding a protein of 250 amino acids.

View Article and Find Full Text PDF

B cell activating factor (BAFF) belonging to the tumor necrosis factor (TNF) family is critical to B cell survival, proliferation, maturation, and immunoglobulin secretion and to T cell activation. In the present study, the full-length cDNA of BAFF (designated bBAFF) from the bat (Vespertilio superans Thomas) was cloned using RT-PCR and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of bBAFF consists of 986 bases including an 873 bp open reading frame encoding 290 amino acids.

View Article and Find Full Text PDF

B-cell activating factor (BAFF), a member of the TNF family, is critical to the survival, proliferation, maturation, and differentiation of B-cells. In the present study, a CpBAFF was amplified from the white-spotted catshark (Chiloscyllium plagiosum) using RT-PCR and RACE (rapid amplification of cDNA end) techniques. To our knowledge, this is the first report of any BAFF gene being cloned from a cartilaginous fish.

View Article and Find Full Text PDF

B-cell activating factor of the TNF family (BAFF) induces B cell survival, proliferation, immunoglobulin secretion and has a role in enhancing immune responses. In the present study, we amplified the cDNA of goat (Capra hircus) BAFF (designated gBAFF) from spleen by reverse transcription-PCR (RT-PCR). The open reading frame (ORF) of gBAFF covers 843 bp encoding 280 amino acids, with a 152-aa mature peptide.

View Article and Find Full Text PDF