Publications by authors named "Fengrong Wei"

Many scientific studies measure different types of high-dimensional signals or images from the same subject, producing multivariate functional data. These functional measurements carry different types of information about the scientific process, and a joint analysis that integrates information across them may provide new insights into the underlying mechanism for the phenomenon under study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer study, a multivariate functional response regression model is proposed, which treats multivariate functional observations as responses and a common set of covariates as predictors.

View Article and Find Full Text PDF

The semiparametric partially linear model allows flexible modeling of covariate effects on the response variable in regression. It combines the flexibility of nonparametric regression and parsimony of linear regression. The most important assumption in the existing methods for the estimation in this model is to assume a priori that it is known which covariates have a linear effect and which do not.

View Article and Find Full Text PDF

Although in cancer research microarray gene profiling studies have been successful in identifying genetic variants predisposing to the development and progression of cancer, the identified markers from analysis of single datasets often suffer low reproducibility. Among multiple possible causes, the most important one is the small sample size hence the lack of power of single studies. Integrative analysis jointly considers multiple heterogeneous studies, has a significantly larger sample size, and can improve reproducibility.

View Article and Find Full Text PDF

In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method for variable selection since it respects the grouping structure in the data. We study the selection and estimation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimension is comparable with the underlying model with high probability and is estimation consistent.

View Article and Find Full Text PDF

Nonparametric varying coefficient models are useful for studying the time-dependent effects of variables. Many procedures have been developed for estimation and variable selection in such models. However, existing work has focused on the case when the number of variables is fixed or smaller than the sample size.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have been frequently conducted on general or isolated populations with related individuals. However, there is a lack of consensus on which strategy is most appropriate for analyzing dichotomous phenotypes in general pedigrees. Using simulation studies, we compared several strategies including generalized estimating equations (GEE) strategies with various working correlation structures, generalized linear mixed model (GLMM), and a variance component strategy (denoted LMEBIN) that treats dichotomous outcomes as continuous with special attentions to their performance with rare variants, rare diseases, and small sample sizes.

View Article and Find Full Text PDF

We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases.

View Article and Find Full Text PDF