Publications by authors named "Fengqiu Wang"

Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), hold great promise for next-generation nanoelectronic and nanophotonic devices. While high photoresponsivity and broad spectral coverage (UV-IR) have been reported, the slow response time of MoS photodetectors caused by their unfavorable RC characteristics is still a major limit in current devices. Once the RC limit issue is resolved, the intrinsic saturation drift velocity of electrons in TMDs (∼10 cm s) may enable GHz opto-electronic operations.

View Article and Find Full Text PDF

Organic single crystals exhibit improved carrier mobility, longer exciton diffusion length, anisotropic charge transport, and unique linear dichroism, while its high exciton binding energy seriously limits the free-carrier generation and photoelectric conversion efficiency. Layered van der Waals heterostructures, which integrate organic crystals with high mobility two-dimensional (2D) inorganic semiconductors, are promising for promoting exciton dissociation and boosting sensitivity by utilizing the interfacial potential and photogating effect. In this work, organic single-crystal rubrene is integrated with a few-layer WS to design the high-performance photodetector.

View Article and Find Full Text PDF

Van der Waals heterostructures based on transition metal dichalcogenides (TMDs) have emerged as excellent candidates for next-generation optoelectronics and valleytronics, due to their fascinating physical properties. The understanding and active control of the relaxation dynamics of heterostructures play a crucial role in device design and optimization. Here, we investigate the back-gate modulation of exciton dynamics in a WS/WSe heterostructure by combining time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) at cryogenic temperatures.

View Article and Find Full Text PDF

Integrated 2-dimensional (2D) photonic devices such as monolayer waveguide has generated exceptional interest because of their ultimate thinness. In particular, they potentially permit stereo photonic architecture through bond-free van der Waals integration. However, little is known about the coupling and controlling of the single-atom guided wave to its photonic environment, which governs the design and application of integrated system.

View Article and Find Full Text PDF

van der Waals heterostructures based on transition metal dichalcogenides (TMDs) provide a fascinating platform for exploring new physical phenomena and novel optoelectronic functionalities. Revealing the energy-dependence of photocarrier population dynamics in heterostructures is key for developing optoelectronic or valleytronic devices. Here, the broadband transient dynamics of interlayer excitation of a nearly-aligned WS/WSe heterostructure is investigated by using energy-dependent pump-probe spectroscopy at cryogenic temperatures.

View Article and Find Full Text PDF
Article Synopsis
  • Fiber optic communication is essential for high-speed technology, but current silicon-based photodetectors complicate systems and risk information loss.
  • Researchers developed an all-fiber organic phototransistor using rubrene and graphene, allowing for easy "plug-and-play" functionality.
  • The device offers fast photoresponse across a wide range of wavelengths and demonstrates effective imaging applications, showcasing the future potential of all-fiber technology in optoelectronics.
View Article and Find Full Text PDF

Organic semiconductors herald new opportunities for fabricating high-performance flexible and wearable optoelectronic devices owing to their intrinsic mechanical flexibility, excellent optical absorption, and cool-free operation. The photocurrent generation mechanisms are of multiple physical origins, including photoconductive, photovoltaic, and photogating effects, and the influence of individual effects on the device figures-of-merit is still not well understood. Here we fabricated a high-performance pentacene single-crystal transistor employing graphene electrodes and demonstrated the modulation from the photogating mechanism to the photoconduction effect by controlling gate bias.

View Article and Find Full Text PDF

Hysteresis is a common phenomenon in passively mode-locked lasers and refers to the effect where the thresholds marking transitions between different pulsation states are not the same for an increasing or decreasing pump power. Despite wide presence in experimental observations, the general dynamics of hysteresis remains elusive, largely due to the challenge to acquire the full hysteresis dynamics of a given mode-locked laser. In this Letter, we overcome this technical bottleneck by fully characterizing an exemplar figure-9 fiber laser cavity, which exhibits well-defined mode-locking patterns in its parameter space or "primitive cell.

View Article and Find Full Text PDF

Quantum phase transition refers to the abrupt change of ground states of many-body systems driven by quantum fluctuations. It hosts various intriguing exotic states around its quantum critical points approaching zero temperature. Here we report the spectroscopic and transport evidences of quantum critical phenomena of an exciton Mott metal-insulator-transition in black phosphorus.

View Article and Find Full Text PDF

Organic materials exhibit efficient light absorption and low-temperature, large-scale processability, and have stimulated enormous research efforts for next-generation optoelectronics. While, high-performance organic devices with fast speed and high responsivity still face intractable challenges, due to their intrinsic limitations including finite carrier mobility and high exciton binding energy. Here an ultrafast and highly sensitive broadband phototransistor is demonstrated by integrating high-quality pentacene single crystal with monolayer graphene.

View Article and Find Full Text PDF

Due to the many available cavity configurations, a generalized approach for identifying the optimal operating state of a Figure-9 mode-locked laser has proved a challenge. In this Letter, we probe the output pulsation states of an exemplar Figure-9 laser by meticulously scanning its parameter space. Regions corresponding to mode-locked operations are identified periodically in the map of the output states.

View Article and Find Full Text PDF

Rubrene single crystals have received a lot of attention for their great potential in electronic and wearable nanoelectronics due to their high carrier mobility and excellent flexibility. While they exhibited remarkable electrical performances, their intrinsic potential as photon detectors has not been fully exploited. Here, we fabricate a sensitive and ultrafast organic phototransistor based on rubrene single crystals.

View Article and Find Full Text PDF

Compact and high-energy femtosecond fiber lasers operating around 900-950 nm are desirable for multiphoton microscopy. Here, we demonstrate a >40 nJ, sub-100 fs, wavelength-tunable ultrafast laser system based on chirped pulse amplification (CPA) in thulium-doped fiber and second-harmonic generation (SHG) technology. Through effective control of the nonlinear effect in the CPA process, we have obtained 92-fs pulses at 1903 nm with an average power of 0.

View Article and Find Full Text PDF

GHz pulsed thulium-doped fiber laser with stabilized repetition rate can enable a wide range of applications. By employing regenerative mode-locking and cavity stabilization technique, we have for the first time demonstrated a 10 GHz polarization-maintaining thulium-doped fiber laser, which has a long-term repetition-rate stabilization and picosecond timing-jitter. In our experiment, a RF circuitry is designed to extract the 10 GHz longitudinal clock signal so that stable regenerative mode-locking is achieved.

View Article and Find Full Text PDF

The existing pulsed laser technologies and devices are mainly in the infrared spectral region below 3 μm so far. However, longer-wavelength pulsed lasers operating in the deep mid-infrared region (3-20 μm) are desirable for atmosphere spectroscopy, remote sensing, laser lidar, and free-space optical communications. Currently, the lack of reliable optical switches is the main limitation for developing pulsed lasers in the deep mid-infrared region.

View Article and Find Full Text PDF

Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices.

View Article and Find Full Text PDF

Understanding the photoinduced ultrafast structural transitions and electronic dynamics in single-walled carbon nanotubes (SWCNTs) is important for the development of SWCNT-based optoelectronic devices. In this study, we conducted femtosecond-resolved electron diffraction and electron energy-loss spectroscopy (EELS) measurements on SWCNTs using ultrafast transmission electron microscopy. The experimental results demonstrated that dominant time constants of the dynamic processes were ∼1.

View Article and Find Full Text PDF

Interfacial charge transfer is a fundamental and crucial process in photoelectric conversion. If charge transfer is not fast enough, carrier harvesting can compromise with competitive relaxation pathways, e.g.

View Article and Find Full Text PDF

In this Letter, we successfully introduce a long-lived non-radiative photocarrier decay component in a Dirac semimetal CdAs thin film via Mn doping. The long-lived decay component is found to vary between 200 ps and 2.8 ns with different Mn concentrations and probing wavelengths.

View Article and Find Full Text PDF

Due to their tunable optical properties with various shapes, sizes, and compositions, nanowires (NWs) have been regarded as a class of semiconductor nanostructures with great potential for photodetectors, light-emitting diodes, gas sensors, microcavity lasers, optical modulators, and converters. Indium arsenide (InAs), an attractive III-V semiconductor NW with the advantages of narrow bandgap and large electron mobility, has attracted considerable interest in infrared optoelectronic and photonic devices. Here, we studied the ultrafast carrier dynamics and nonlinear optical responses of InAs NWs ranging from 1.

View Article and Find Full Text PDF

Graphene (Gr) has many unique properties including gapless band structure, ultrafast carrier dynamics, high carrier mobility, and flexibility, making it appealing for ultrafast, broadband, and flexible optoelectronics. To overcome its intrinsic limit of low absorption, hybrid structures are exploited to improve the device performance. Particularly, van der Waals heterostructures with different photosensitive materials and photonic structures are very effective for improving photodetection and modulation efficiency.

View Article and Find Full Text PDF

Mode-locked oscillators with highly tunable output characteristics are desirable for a range of applications. Here, with a custom-made tunable filter, we demonstrate a carbon nanotube (CNT) mode-locked thulium fiber laser with widely tunable wavelength, spectral bandwidth, and pulse duration. The demonstrated laser's wavelength tuning range reached 300 nm (from 1733 nm to 2033 nm), which is the widest-ever that was reported for rare-earth ion doped fiber oscillators in the near-infrared.

View Article and Find Full Text PDF

In this Letter, we demonstrate an electrically contacted saturable absorber (SA) device based on topological Dirac semimetal CdAs. With a current-induced temperature change in the range of 297-336 K, the modulation depth of the device is found to be significantly altered from 33% to 76% (under the irradiation of a 1560 nm femtosecond laser). The broad tuning of the modulation depth is attributed to the strong temperature dependence of the carrier concentration close to room temperature.

View Article and Find Full Text PDF

A high repetition-rate actively mode-locked thulium fiber laser is demonstrated where an electro-optic lithium niobate phase modulator is used to synchronize the longitudinal modes in the cavity. The repetition rate of the actively mode-locked laser is tunable from 14.6 MHz to 19 GHz, where the 19 GHz pulses exhibit a super-mode suppression ratio of 46 dB.

View Article and Find Full Text PDF

Graphene has been widely investigated for use in high-performance photodetectors due to its broad absorption band and high carrier mobility. While exhibiting remarkably strong absorption in the ultraviolet range, the fabrication of a large-scale integrable, graphene-based ultraviolet photodetector with long-term stability has proven to be a challenge. Here, using graphene as a template for C assembly, we synthesized a large-scale all-carbon hybrid film with inherently strong and tunable UV aborption.

View Article and Find Full Text PDF