Designing flame-retardant polymers with high performance is a long-standing challenge, partly because of the time-consuming traditional approaches based on experiential intuition and trial-and-error screenings. Inspired by the effective new paradigm of data-driven material discovery, we used machine learning to analyze experimental data to accelerate the development of new flame-retardant polymers. To explore the relationship between limit oxygen index (LOI) and components, we prepared 20 composites and then trained a simple equation for the LOI using the method sure independence screening and sparsifying operator (SISSO).
View Article and Find Full Text PDFAlthough a massive research has been devoted on the exploration of noble metal-based nanozyme, less progress has been made in the investigation of palladium (Pd) nanozyme and the interaction between ions and Pd nanozyme. In this study, a new type of Pd nanozyme was prepared by a facile one-pot approach by using carboxylated chitosan as the stabilizer. Owing to the synergistic effect of carboxylated chitosan stabilized Pd nanoparticles (CC-PdNPs) can effectively catalyze the HO-mediated oxidation of 3,3',5,5'-tetramethylbenzidine sulfate (TMB) accompanied by a blue color change (oxidized TMB), indicating the peroxidase-like activity of CC-PdNPs.
View Article and Find Full Text PDFWhey protein concentrate (WPC) was oxidized by peroxyl radicals derived from 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and the kinetics of droplet stability in O/W and W/O emulsions stabilized by oxidized WPC were evaluated by studying the micro-rheology. Degrees of protein oxidation were indicated by carbonyl concentration and emulsion types were distinguished by fluorescence microscopy. Oxidation resulted in free sulfhydryl groups degradation and surface hydrophobicity decrease.
View Article and Find Full Text PDFCigarette smoking is a risk factor in the developing of various cancers including breast tumors. There are more than 60 chemical carcinogens in the cigarette smoke; 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being one of the strongest tobacco-specific carcinogens. In this study, we demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases and stimulated proliferation in human normal mammary epithelial cells.
View Article and Find Full Text PDF