Path planning for multiple unmanned aerial vehicles (UAVs) is crucial in collaborative operations and is commonly regarded as a complicated, multi-objective optimization problem. However, traditional approaches have difficulty balancing convergence and diversity, as well as effectively handling constraints. In this study, a directional evolutionary non-dominated sorting dung beetle optimizer with adaptive stochastic ranking (DENSDBO-ASR) is developed to address these issues in collaborative multi-UAV path planning.
View Article and Find Full Text PDFOne of the critical technologies to ensure cyberspace security is network traffic anomaly detection, which detects malicious attacks by analyzing and identifying network traffic behavior. The rapid development of the network has led to explosive growth in network traffic, which seriously impacts the user's information security. Researchers have delved into intrusion detection as an active defense technology to address this challenge.
View Article and Find Full Text PDF