Tripartite motif-containing protein 31 (Trim31) is known to be involved in various pathological conditions, including heart diseases. Nonetheless, its specific involvement in heart failure (HF) has yet to be determined. In this study, we examined the function and mechanism of Trim31 in HF by using mice with cardiac-specific knockout (cKO) of Trim31.
View Article and Find Full Text PDFBackground: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated.
Purpose: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway.
Lipid rafts play important roles in signal transduction, particularly in responses to inflammatory processes. The current study aimed to identify whether lipid raft-mediated inflammation contributes to hyperhomocysteinemia (HHcy)-accelerated atherosclerosis (AS), and to investigate the underlying mechanisms. THP-1-derived macrophages were used for in vitro experiments.
View Article and Find Full Text PDFDiabetes mellitus is a chronic progressive inflammatory metabolic disease with pancreatic β-cells dysfunction. The present study aimed to investigate whether miR-17-5p plays a protective effect on pancreatic β-cells function in diabetes mellitus (DM) mice and dissect the underlying mechanism. C57BL/6J mice were randomly divided into control, DM, DM + Lentivirus negative control (LV-NC), and DM + Lenti-OE™ miR-17-5p (LV-miR-17-5) groups.
View Article and Find Full Text PDFBackground: Nicotine exerts direct effects on multiple cell types in the cardiovascular system by associating with its high-affinity nicotinic acetylcholine receptors (nAchRs). Lipid raft is a membrane microdomain that recruits various receptors and signaling molecules for coordinating cellular immune response and many others signaling processes. Here, we aim to identify the essential role of lipid raft in mediating nicotine-triggered inflammatory and nicotine-accelerated atherosclerosis, and to figure out the specific receptor of nicotine-induced Nod-like receptor protein 3 (NLRP3) inflammasome activation in macrophage.
View Article and Find Full Text PDFBackground: The combination of Panax ginseng and Angelica sinensis (CPA) has been used to treat stroke for one thousand years and demonstrated clinically to have satisfied effects. However, the underlying mechanism remains unknown.
Purpose: We investigate whether CPA has neuroprotective effects via suppressing Nod-like receptor protein 3 (NLRP3) inflammasome and microglial pyroptosis against ischemic injury in transient middle cerebral artery occlusion (MCAO) rats.
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure, and the underlying mechanism remains largely elusive. Here we investigated whether NLRP3 inflammasome-mediated pyroptosis contributes to non-ischemic DCM and dissected the underlying mechanism. We found that hyper activated NLRP3 inflammasome with pyroptotic cell death of cardiomyocytes were presented in the myocardial tissues of DCM patients, which were negatively correlated with cardiac function.
View Article and Find Full Text PDFAims: The present study aimed to investigate the effect of metformin on diabetes-accelerated atherosclerosis and whether Nod-like receptor protein 3 (NLRP3) inflammasome is a target for metformin.
Materials And Methods: ApoE male mice were divided randomly into control, streptozocin-induced diabetes mellitus and metformin groups. Metabolic parameters, atherosclerotic lesion, activation of NLRP3 inflammasomes and related signaling pathways were detected.
Background: Haploidentical donor (HID) allogeneic hematopoietic stem cell transplantation (HSCT) is an alternative curative treatment for patients with severe aplastic anemia (SAA) who do not have suitable matched related donors (MRD). The aim of this study was to compare the therapeutic outcomes of HID-HSCT with those of MRD-HSCT for SAA.
Methods: A total of 235 SAA patients who underwent HID-HSCT (116) or MRD-HSCT (119) at 11 transplantation centers from January 2007 to January 2016 were included.
The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue.
View Article and Find Full Text PDF