Publications by authors named "Fengnan Liu"

Potyviral P3 is involved in viral replication, movement, and pathogenicity; however, its biochemical function is unknown. In this study, the P3 of the zucchini yellow mosaic virus (ZYMV) interacted with ClBBD, a protein with high ortholog bifunctional nuclease activity, in watermelon. The binding site was shown via yeast two-hybrid screening and BiFC assay to be located at the N-terminus of P3 rather than P3N-PIPO.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis-related 1 (ClPR1) gene in watermelon plays a crucial role in resisting Zucchini yellow mosaic virus (ZYMV), as evidenced by reduced virus accumulation in a resistant watermelon line (938-16-B) compared to a susceptible line (H1).
  • Grafting experiments indicated that resistance signals can be transferred from the resistant line (938-16-B) to susceptible varieties, leading to hypersensitivity response (HR) induction.
  • ClPR1 expression is uniquely activated in the resistant line after ZYMV infection, and while its overexpression reduces virus accumulation in susceptible lines, it does not trigger HR, linking ClPR1 to the resistance mechanism against ZYMV.
View Article and Find Full Text PDF

A stable explicit difference scheme, which is based on forward Euler format, is proposed for the Richards equation. To avoid the degeneracy of the Richards equation, we add a perturbation to the functional coefficient of the parabolic term. In addition, we introduce an extra term in the difference scheme which is used to relax the time step restriction for improving the stability condition.

View Article and Find Full Text PDF

SOX9 plays a crucial, extensive and conservative role in the process of somatic tissue development and adult regeneration through the positive self-regulation mediated by SOM across all vertebrates. In this study, we have cloned SOX9 from the kidney of hatchling Alligator sinensis. The full-length of SOX9 cDNA is 3878 bp with an open reading frame encoding 494 amino acids.

View Article and Find Full Text PDF

Fluorescence imaging has currently emerged as one of the most frequently used noninvasive imaging technologies to selectively monitor biological processes in living systems. In past decades, gold nanoclusters (Au NCs) has received increasing attraction because of their intrinsic fluorescence and their inherent biocompatibility. As a stabilizing and reducing agent, an abundant, sustainable, and widely used polypeptide derived drug molecule, aprotinin (Ap), is selected for the synthesis of Au nanoclusters (Ap-Au NCs) due to characteristic bioactivity, excellent biocompatibility, biodegradability, and non-allergenic character.

View Article and Find Full Text PDF