Publications by authors named "Fengmin Guo"

Herein, we report the synthesis of 4'-C-trifluoromethyl (4'-CF3) thymidine (T4'-CF3) and its incorporation into oligodeoxynucleotides (ODNs) through solid-supported DNA synthesis. The 4'-CF3 modification leads to a marginal effect on the deoxyribose conformation and a local helical structure perturbation for ODN/RNA duplexes. This type of modification slightly decreases the thermal stability of ODN/RNA duplexes (-1 °C/modification) and leads to improved nuclease resistance.

View Article and Find Full Text PDF

RNA cleavage via internal transesterification is a fundamental reaction involved in RNA processing and metabolism, and the regulation thereof. Herein, the influence of ribose conformation on this reaction was investigated with conformationally constrained ribonucleotides. RNA cleavage rates were found to decrease in the order South-constrained ribonucleotide > native ribonucleotide ≫ North-constrained counterpart, indicating that the ribose conformation plays an important role in modulating RNA cleavage via internal transesterification.

View Article and Find Full Text PDF

Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.

View Article and Find Full Text PDF

Described herein is a facile and efficient methodology toward the synthesis of Morusin scaffolds and Morusignin L scaffolds 4-9 and 12via a novel three-step approach (Michael addition or prenylation, cyclization and cyclization) and use a rapid, microwave-accelerated cyclization as the key step. Furthermore, their biological activities have been preliminarily demonstrated by in vitro evaluation for anti-osteoporosis activity. These Morusin, Morusignin L and newly synthesized compounds 5b, 6a, 8e, 8f greatly exhibited the highest potency, especially at the 10mol/L (P<0.

View Article and Find Full Text PDF